【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線l1:y= x與直線l2:y=﹣x+6相交于點(diǎn)M,直線l2與x軸相交于點(diǎn)N.

(1)求M,N的坐標(biāo).
(2)矩形ABCD中,已知AB=1,BC=2,邊AB在x軸上,矩形ABCD沿x軸自左向右以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng),設(shè)矩形ABCD與△OMN的重疊部分的面積為S,移動(dòng)的時(shí)間為t(從點(diǎn)B與點(diǎn)O重合時(shí)開(kāi)始計(jì)時(shí),到點(diǎn)A與點(diǎn)N重合時(shí)計(jì)時(shí)開(kāi)始結(jié)束).直接寫(xiě)出S與自變量t之間的函數(shù)關(guān)系式(不需要給出解答過(guò)程).
(3)在(2)的條件下,當(dāng)t為何值時(shí),S的值最大?并求出最大值.

【答案】
(1)

解:解方程組 ,

解得: ,

則M的坐標(biāo)是:(4,2).

在解析式y(tǒng)=﹣x+6中,令y=0,解得:x=6,則N的坐標(biāo)是:(6,0)


(2)

解:當(dāng)0≤t≤1時(shí),重合部分是一個(gè)三角形,OB=t,則高是 t,則面積是 ×t t= t2;

當(dāng)1<t≤4時(shí),重合部分是直角梯形,梯形的高是1,下底是: t,上底是: (t﹣1),根據(jù)梯形的面積公式可以得到:S= [ t+ (t﹣1)]= (t﹣ );

當(dāng)4<t≤5時(shí),過(guò)M作x軸的垂線,則重合部分被垂線分成兩個(gè)直角梯形,兩個(gè)梯形的下底都是2,上底分別是:﹣t+6和 (t﹣1),根據(jù)梯形的面積公式即可求得

S=﹣ t2+ t﹣ ;

當(dāng)5<t≤6時(shí),重合部分是直角梯形,與當(dāng)1<t≤4時(shí),重合部分是直角梯形的計(jì)算方法相同,則S= (13﹣2t);

當(dāng)6<t≤7時(shí),重合部分是直角三角形,則與當(dāng)0≤t≤1時(shí),解法相同,可以求得S= (7﹣t)2

則:S=


(3)

解:在0≤t≤1時(shí),函數(shù)值y隨t的增大而增大,則當(dāng)t=1時(shí),取得最大值是: ;

當(dāng)1<t≤4時(shí),函數(shù)值y隨t的增大而增大,則當(dāng)t=4時(shí),取得最大值是: (4﹣ )= ;

當(dāng)4<t≤5時(shí),是二次函數(shù),對(duì)稱軸t= ,則最大值是:﹣ ×( 2+ × = ;

當(dāng)5<t≤6時(shí),函數(shù)值y隨t的增大而減小,所以函數(shù)一定小于 ;

同理,當(dāng)6<t≤7時(shí),y隨t的增大而減小,所以函數(shù)一定小于

所以函數(shù)的最大值是:


【解析】(1)解兩條直線的解析式組成的方程組的解,即可求得交點(diǎn)M的坐標(biāo),在y=﹣x+6中,令y=0即可求得點(diǎn)N的橫坐標(biāo),則N的坐標(biāo)即可求解;(2)分成0≤t≤1,1<t≤4,4<t≤5,5<t≤6,6<t≤7五種情況,利用三角形的面積公式和梯形的面積公式,即可求得函數(shù)的解析式;(3)分別求得每種情況下函數(shù)的最值或函數(shù)值的范圍,即可確定.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開(kāi)口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減小;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,點(diǎn)F在邊AC上,并且CF=2,點(diǎn)E為邊BC上的動(dòng)點(diǎn),將△CEF沿直線EF翻折,點(diǎn)C落在點(diǎn)P處,則點(diǎn)P到邊AB距離的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC,垂足為點(diǎn)F,連接DF,分析下列四個(gè)結(jié)論:①△AEF~△CAB;②CF=2AF;③DF=DC;④tan∠CAD= .其中正確的結(jié)論有( )

A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了倡導(dǎo)節(jié)能低碳的生活,某公司對(duì)集體宿舍用電收費(fèi)作如下規(guī)定:一間宿舍一個(gè)月用電量不超過(guò)a千瓦時(shí),則一個(gè)月的電費(fèi)為20元;若超過(guò)a千瓦時(shí),則除了交20元外,超過(guò)部分每千瓦時(shí)要交 元.某宿舍3月份用電80千瓦時(shí),交電費(fèi)35元;4月份用電45千瓦時(shí),交電費(fèi)20元.
(1)求a的值;
(2)若該宿舍5月份交電費(fèi)45元,那么該宿舍當(dāng)月用電量為多少千瓦時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知P是線段AB的黃金分割點(diǎn),且PA>PB,若S1表示PA為一邊的正方形的面積,S2表示長(zhǎng)是AB,寬是PB的矩形的面積,則S1S2 . (填“>”“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】
(1)解方程:x2﹣4x+2=0
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系中的任意兩點(diǎn)P1(x1 , y1),P2(x2 , y2),我們把|x1﹣x2|+|y1﹣y2|叫做P1、P2兩點(diǎn)間的直角距離,記作d(P1 , P2).
(1)已知O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P(x,y)滿足d(O,P)=1,請(qǐng)寫(xiě)出x與y之間滿足的關(guān)系式,并在所給的直角坐標(biāo)系中畫(huà)出所有符合條件的點(diǎn)P所組成的圖形;
(2)設(shè)P0(x0 , y0)是一定點(diǎn),Q(x,y)是直線y=ax+b上的動(dòng)點(diǎn),我們把d(P0 , Q)的最小值叫做P0到直線y=ax+b的直角距離.試求點(diǎn)M(2,1)到直線y=x+2的直角距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中放置了5個(gè)如圖所示的正方形(用陰影表示),點(diǎn)B1在y軸上,點(diǎn)C1、E1、E2、C2、E3、E4、C3在x軸上.若正方形A1B1C1D1的邊長(zhǎng)為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3 , 則點(diǎn)A3到x軸的距離是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在學(xué)習(xí)“銳角三角函數(shù)”中發(fā)現(xiàn),將如圖所示的矩形紙片ABCD沿過(guò)點(diǎn)B的直線折疊,使點(diǎn)A落在BC上的點(diǎn)E處,還原后,再沿過(guò)點(diǎn)E的直線折疊,使點(diǎn)A落在BC上的點(diǎn)F處,這樣就可以求出67.5°角的正切值是(
A. +1
B. +1
C.2.5
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案