如圖,在平面直角坐標(biāo)系中,拋物線y=-x2+bx+c經(jīng)過(guò)A(0,-4)、B(x1,0)、C(x2,0)三點(diǎn),且x2-x1=5.
(1)求b、c的值;
(2)在拋物線上求一點(diǎn)D,使得四邊形BDCE是以BC為對(duì)角線的菱形;
(3)在拋物線上是否存在一點(diǎn)P,使得四邊形BPOH是以O(shè)B為對(duì)角線的菱形?若存在,求出點(diǎn)P的坐標(biāo),并判斷這個(gè)菱形是否為正方形;若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)把A(0,-4)代入可求c,運(yùn)用兩根關(guān)系及x2-x1=5,對(duì)式子合理變形,求b;
(2)因?yàn)榱庑蔚膶?duì)角線互相垂直平分,故菱形的另外一條對(duì)角線必在拋物線的對(duì)稱軸上,滿足條件的D點(diǎn),就是拋物線的頂點(diǎn);
(3)∵四邊形BPOH是以O(shè)B為對(duì)角線的菱形,∴PH垂直平分OB,求出OB的中點(diǎn)坐標(biāo),代入拋物線解析式即可,再根據(jù)所求點(diǎn)的坐標(biāo)與線段OB的長(zhǎng)度關(guān)系,判斷是否為正方形.
解答:解:(1)解法一:∵拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)A(0,-4),
∴c=-4
又∵由題意可知,x1、x2是方程-x2+bx+c=0的兩個(gè)根,
∴x1+x2=b,x1x2=-c
由已知得(x2-x12=25
又∵(x2-x12=(x2+x12-4x1x2
=b2-24
b2-24=25
解得b=±
當(dāng)b=時(shí),拋物線與x軸的交點(diǎn)在x軸的正半軸上,不合題意,舍去.
∴b=-
解法二:∵x1、x2是方程-x2+bx+c=0的兩個(gè)根,
即方程2x2-3bx+12=0的兩個(gè)根.
∴x=,
∴x2-x1==5,
解得b=±
當(dāng)b=時(shí),拋物線與x軸的交點(diǎn)在x軸的正半軸上,不合題意,舍去.
∴b=-

(2)∵四邊形BDCE是以BC為對(duì)角線的菱形,根據(jù)菱形的性質(zhì),點(diǎn)D必在拋物線的對(duì)稱軸上,
又∵y=-x2-x-4=-(x+2+
∴拋物線的頂點(diǎn)(-)即為所求的點(diǎn)D.

(3)∵四邊形BPOH是以O(shè)B為對(duì)角線的菱形,點(diǎn)B的坐標(biāo)為(-6,0),根據(jù)菱形的性質(zhì),點(diǎn)P必是直線x=-3與
拋物線y=-x2-x-4的交點(diǎn),
∴當(dāng)x=-3時(shí),y=-×(-3)2-×(-3)-4=4,
∴在拋物線上存在一點(diǎn)P(-3,4),使得四邊形BPOH為菱形.
四邊形BPOH不能成為正方形,因?yàn)槿绻倪呅蜝POH為正方形,點(diǎn)P的坐標(biāo)只能是(-3,3),但這一點(diǎn)不在拋物線上.
點(diǎn)評(píng):本題考查了拋物線解析式的求法,根據(jù)菱形,正方形的性質(zhì)求拋物線上符合條件的點(diǎn)的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案