【題目】已知在等腰直角△ABC中,∠BAC=90°,點D從點B出發(fā)沿射線BC方向移動.在AD右側(cè)以AD為腰作等腰直角△ADE,∠DAE=90°.連接CE.
(1)求證:△ACE≌△ABD;
(2)點D在移動過程中,請猜想CE,CD,DE之間的數(shù)量關(guān)系,并說明理由;
(3)若AC=,當(dāng)CD=1時,結(jié)合圖形,請直接寫出DE的長 .
【答案】(1)見解析;(2)見解析;(3)或
【解析】
(1)由等腰直角三角形的性質(zhì)可得∠BAC=∠DAE=90°,BA=CA,AD=AE,然后根據(jù)同角的余角相等可得∠BAD=∠CAE,進而利用SAS可證明△ABD≌△ACE;
(2)當(dāng)點D在線段BC上時,由三角形全等的性質(zhì)可得∠ABD=∠ACE=45°,易得∠ECD=90°,然后根據(jù)勾股定理可得結(jié)論,同理可得點D在線段BC的延長線上時CE,CD,DE之間的數(shù)量關(guān)系;
(3)當(dāng)點D在線段BC上時,首先求出BC,然后可得BD的長,根據(jù)全等三角形的性質(zhì)可得CE的長,利用勾股定理可得答案,當(dāng)點D在線段BC的延長線上時,同理可求DE.
解:(1)∵△ABC,△ADE是等腰直角三角形,
∴∠BAC=∠DAE=90°,BA=CA,AD=AE,
∴∠BAD+∠DAC =∠CAE+∠DAC,
∴∠BAD=∠CAE,
在△ABD與△ACE中,BA=CA,∠BAD=∠CAE,AD=AE,
∴△ABD≌△ACE(SAS);
(2)當(dāng)點D在線段BC上時,
∵△ABD≌△ACE,
∴∠ABD=∠ACE=45°,
∴∠ECD=∠ACE+∠ACB=90°,
∴△ECD是直角三角形,
∴CE2+CD2=DE2,
當(dāng)點D在線段BC的延長線上時,如圖2,同理可得:CE2+CD2=DE2;
(3)當(dāng)點D在線段BC上時,
∵△ABD≌△ACE,AC=,CD=1,
∴BC=AC=2,
∴BD=BC-CD=1,
∴CE=1,
∴,
當(dāng)點D在線段BC的延長線上時,如圖2,同理可得CE=BD= BC+CD=3,
∴,
綜上所述,DE的長為或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠B=∠C=90°,E是BC的中點,DE平分∠ADC.
(1)求證:AE平分∠BAD.
(2)求證:AD=AB+CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將直角三角板ABC繞直角頂點C逆時針旋轉(zhuǎn)角度,得到△DCE,其中CE與AB交于點F,∠ABC=30°,連接BE,若△BEF為等腰三角形(即有兩內(nèi)角相等),則旋轉(zhuǎn)角的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形紙片ABCD折疊,使點D與點B重合,點C落在C′處,折痕為EF,若AB=1,BC=2,則△ABE和△BC′F的周長之和為( )
A. 3 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售甲、乙兩種品牌的智能手機,這兩種手機的進價和售價如下表所示:
甲 | 乙 | |
進價(元/部) | 4000 | 2500 |
售價(元/部) | 4300 | 3000 |
該商場計劃購進兩種手機若干部,共需15.5萬元,預(yù)計全部銷售后可獲毛利潤共2.1萬元.
(毛利潤=(售價﹣進價)×銷售量)
(1)該商場計劃購進甲、乙兩種手機各多少部?
(2)通過市場調(diào)研,該商場決定在原計劃的基礎(chǔ)上,減少甲種手機的購進數(shù)量,增加乙種手機的購進數(shù)量.已知乙種手機增加的數(shù)量是甲種手機減少的數(shù)量的2倍,而且用于購進這兩種手機的總資金不超過16萬元,該商場怎樣進貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點A(3,0),B(﹣1,0),C(0,﹣3).
(1)求該拋物線的解析式;
(2)若以點A為圓心的圓與直線BC相切于點M,求切點M的坐標(biāo);
(3)若點Q在x軸上,點P在拋物線上,是否存在以點B,C,Q,P為頂點的四邊形是平行四邊形?若存在,求點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ACB=∠ADB=90°,M、N 分別是 AB、CD 的中點.
(1)求證:MN⊥CD;
(2)若 AB=50,CD=48,求 MN 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若等腰三角形的頂角為36°,則這個三角形就是黃金三角形。如圖,在△ABC中,BA=BC,D 在邊 CB 上,且 DB=DA=AC。
(1)如圖1,寫出圖中所有的黃金三角形,并證明;
(2)若 M為線段 BC上的點,過 M作直線MH⊥AD于 H,分別交直線 AB,AC與點N,E,如圖 2,試寫出線段 BN、CE、CD之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課間,小剛拿著老師的等腰直角三角板玩,一不小心掉到垂直地面的兩個木塊之間,如圖所示:
(1)求證:△ADC≌△CEB;
(2)若測得AD=15cm,BE=10cm,求兩個木塊之間的距離DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com