(2010•本溪)如圖①,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(1,0),以O(shè)A為邊在第一象限內(nèi)作正方形OABC,點(diǎn)D是x軸正半軸上一動(dòng)點(diǎn)(OD>1),連接BD,以BD為邊在第一象限內(nèi)作正方形DBFE,設(shè)M為正方形DBFE的中心,直線MA交y軸于點(diǎn)N.如果定義:只有一組對(duì)角是直角的四邊形叫做損矩形.
(1)試找出圖1中的一個(gè)損矩形;
(2)試說(shuō)明(1)中找出的損矩形的四個(gè)頂點(diǎn)一定在同一個(gè)圓上;
(3)隨著點(diǎn)D位置的變化,點(diǎn)N的位置是否會(huì)發(fā)生變化?若沒(méi)有發(fā)生變化,求出點(diǎn)N的坐標(biāo);若發(fā)生變化,請(qǐng)說(shuō)明理由;
(4)在圖②中,過(guò)點(diǎn)M作MG⊥y軸于點(diǎn)G,連接DN,若四邊形DMGN為損矩形,求D點(diǎn)坐標(biāo).

【答案】分析:(1)根據(jù)題中給出的損矩形的定義,從圖找出只有一組對(duì)角是直角的四邊形即可;
(2)證明四邊形BADM四個(gè)頂點(diǎn)到BD的中點(diǎn)距離相等即可;
(3)利用同弧所對(duì)的圓周角相等可得∠MAD=∠MBD,進(jìn)而得到OA=ON,那么就求得了點(diǎn)N的坐標(biāo);
(4)根據(jù)正方形的性質(zhì)及損矩形含有的直角,利用勾股定理求解.
解答:解:(1)從圖中我們可以發(fā)現(xiàn)四邊形ADMB就是一個(gè)損矩形.
∵點(diǎn)M是正方形對(duì)角線的交點(diǎn),
∴∠BMD=90°,
∵∠BAD=90°,
∴四邊形ADMB就是一個(gè)損矩形.

(2)取BD中點(diǎn)H,連接MH,AH.
∵四邊形OABC,BDEF是正方形,
∴△ABD,△BDM都是直角三角形,
∴HA=BD,HM=BD,
∴HA=HB=HM=HD=BD,
∴損矩形ABMD一定有外接圓.

(3)∵損矩形ABMD一定有外接圓⊙H,
∴∠MAD=∠MBD,
∵四邊形BDEF是正方形,
∴MBD=45°,
∴MAD=45°,
∴OAN=45°,
∵OA=1,
∴ON=1,
∴N點(diǎn)的坐標(biāo)為(0,-1).

(4)延長(zhǎng)AB交MG于點(diǎn)P,過(guò)點(diǎn)M作MQ⊥x軸于點(diǎn)Q,
設(shè)點(diǎn)MG=x,則四邊形APMQ為正方形,
∴PM=AQ=x-1,
∴OG=MQ=x-1,
∵△MBP≌△MDQ,
∴DQ=BP=CG=x-2,
∴MN2=2x2,
ND2=(2x-2)2+12,
MD2=(x-1)2+(x-2)2
∵四邊形DMGN為損矩形,
∴2x2=(2x-2)2+12+(x-1)2+(x-2)2
∴2x2-7x+5=0,
∴x=2.5或x=1(舍去),
∴OD=3,
∴D點(diǎn)坐標(biāo)為(3,0).
點(diǎn)評(píng):解決本題的關(guān)鍵是理解損矩形的只有一組對(duì)角是直角的性質(zhì),綜合考查了四點(diǎn)共圓的判定及勾股定理的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2010•本溪)如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=5,OC=3.
(1)在AB邊上取一點(diǎn)D,將紙片沿OD翻折,使點(diǎn)A落在BC邊上的點(diǎn)E處,求點(diǎn)D,E的坐標(biāo);
(2)若過(guò)點(diǎn)D,E的拋物線與x軸相交于點(diǎn)F(-5,0),求拋物線的解析式和對(duì)稱軸方程;
(3)若(2)中的拋物線與y軸交于點(diǎn)H,在拋物線上是否存在點(diǎn)P,使△PFH的內(nèi)心在坐標(biāo)軸上?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
(4)若(2)中的拋物線與y軸相交于點(diǎn)H,點(diǎn)Q在線段OD上移動(dòng),作直線HQ,當(dāng)點(diǎn)Q移動(dòng)到什么位置時(shí),O,D兩點(diǎn)到直線HQ的距離之和最大?請(qǐng)直接寫出此時(shí)點(diǎn)Q的坐標(biāo)及直線HQ的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2010•本溪)如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=5,OC=3.
(1)在AB邊上取一點(diǎn)D,將紙片沿OD翻折,使點(diǎn)A落在BC邊上的點(diǎn)E處,求點(diǎn)D,E的坐標(biāo);
(2)若過(guò)點(diǎn)D,E的拋物線與x軸相交于點(diǎn)F(-5,0),求拋物線的解析式和對(duì)稱軸方程;
(3)若(2)中的拋物線與y軸交于點(diǎn)H,在拋物線上是否存在點(diǎn)P,使△PFH的內(nèi)心在坐標(biāo)軸上?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
(4)若(2)中的拋物線與y軸相交于點(diǎn)H,點(diǎn)Q在線段OD上移動(dòng),作直線HQ,當(dāng)點(diǎn)Q移動(dòng)到什么位置時(shí),O,D兩點(diǎn)到直線HQ的距離之和最大?請(qǐng)直接寫出此時(shí)點(diǎn)Q的坐標(biāo)及直線HQ的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年遼寧省本溪市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•本溪)如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=5,OC=3.
(1)在AB邊上取一點(diǎn)D,將紙片沿OD翻折,使點(diǎn)A落在BC邊上的點(diǎn)E處,求點(diǎn)D,E的坐標(biāo);
(2)若過(guò)點(diǎn)D,E的拋物線與x軸相交于點(diǎn)F(-5,0),求拋物線的解析式和對(duì)稱軸方程;
(3)若(2)中的拋物線與y軸交于點(diǎn)H,在拋物線上是否存在點(diǎn)P,使△PFH的內(nèi)心在坐標(biāo)軸上?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
(4)若(2)中的拋物線與y軸相交于點(diǎn)H,點(diǎn)Q在線段OD上移動(dòng),作直線HQ,當(dāng)點(diǎn)Q移動(dòng)到什么位置時(shí),O,D兩點(diǎn)到直線HQ的距離之和最大?請(qǐng)直接寫出此時(shí)點(diǎn)Q的坐標(biāo)及直線HQ的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年遼寧省本溪市初中畢業(yè)學(xué)業(yè)考試數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•本溪)如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=5,OC=3.
(1)在AB邊上取一點(diǎn)D,將紙片沿OD翻折,使點(diǎn)A落在BC邊上的點(diǎn)E處,求點(diǎn)D,E的坐標(biāo);
(2)若過(guò)點(diǎn)D,E的拋物線與x軸相交于點(diǎn)F(-5,0),求拋物線的解析式和對(duì)稱軸方程;
(3)若(2)中的拋物線與y軸交于點(diǎn)H,在拋物線上是否存在點(diǎn)P,使△PFH的內(nèi)心在坐標(biāo)軸上?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
(4)若(2)中的拋物線與y軸相交于點(diǎn)H,點(diǎn)Q在線段OD上移動(dòng),作直線HQ,當(dāng)點(diǎn)Q移動(dòng)到什么位置時(shí),O,D兩點(diǎn)到直線HQ的距離之和最大?請(qǐng)直接寫出此時(shí)點(diǎn)Q的坐標(biāo)及直線HQ的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年湖北省咸寧市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•本溪)如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=5,OC=3.
(1)在AB邊上取一點(diǎn)D,將紙片沿OD翻折,使點(diǎn)A落在BC邊上的點(diǎn)E處,求點(diǎn)D,E的坐標(biāo);
(2)若過(guò)點(diǎn)D,E的拋物線與x軸相交于點(diǎn)F(-5,0),求拋物線的解析式和對(duì)稱軸方程;
(3)若(2)中的拋物線與y軸交于點(diǎn)H,在拋物線上是否存在點(diǎn)P,使△PFH的內(nèi)心在坐標(biāo)軸上?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
(4)若(2)中的拋物線與y軸相交于點(diǎn)H,點(diǎn)Q在線段OD上移動(dòng),作直線HQ,當(dāng)點(diǎn)Q移動(dòng)到什么位置時(shí),O,D兩點(diǎn)到直線HQ的距離之和最大?請(qǐng)直接寫出此時(shí)點(diǎn)Q的坐標(biāo)及直線HQ的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案