如果點A(﹣1,2)在一個正比例函數(shù)y=f(x)的圖象上,那么y隨著x的增大而 (填“增大”或“減小”).
科目:初中數(shù)學(xué) 來源: 題型:
我們常見的炒菜鍋和鍋蓋都是拋物線面,經(jīng)過鍋心和蓋心的縱斷面是兩端拋物線組合而成的封閉圖形,不妨簡稱為“鍋線”,鍋口直徑為6dm,鍋深3dm,鍋蓋高1dm(鍋口直徑與鍋蓋直徑視為相同),建立直接坐標(biāo)系如圖①所示,如果把鍋縱斷面的拋物線的記為C1,把鍋蓋縱斷面的拋物線記為C2.
(1)求C1和C2的解析式;
(2)如圖②,過點B作直線BE:y=x﹣1交C1于點E(﹣2,﹣),連接OE、BC,在x軸上求一點P,使以點P、B、C為頂點的△PBC與△BOE相似,求出P點的坐標(biāo);
(3)如果(2)中的直線BE保持不變,拋物線C1或C2上是否存在一點Q,使得△EBQ的面積最大?若存在,求出Q的坐標(biāo)和△EBQ面積的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知拋物線與x軸交于點A(﹣2,0),B(4,0),與y軸交于點C(0,8).
(1)求拋物線的解析式及其頂點D的坐標(biāo);
(2)設(shè)直線CD交x軸于點E.在線段OB的垂直平分線上是否存在點P,使得點P到直線CD的距離等于點P到原點O的距離?如果存在,求出點P的坐標(biāo);如果不存在,請說明理由;
(3)過點B作x軸的垂線,交直線CD于點F,將拋物線沿其對稱軸平移,使拋物線與線段EF總有公共點.試探究:拋物線向上最多可平移多少個單位長度?向下最多可平移多少個單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如果點(﹣a,﹣b)在反比例函數(shù)y=的圖象上,那么下列五點(a,b)、(b,a)、(b,﹣a)、(﹣a,b)、(﹣b,a)中,在此圖象上的點有 個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如果點A(﹣1,y1)、B(1,y2)、C(,y3)是反比例函數(shù)圖象上的三個點,則下列結(jié)論正確的是( 。
| A. | y1>y2>y3 | B. | y3>y2>y1 | C. | y2>y1>y3 | D. | y3>y1>y2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com