【題目】《孫子算經(jīng)》是中國傳統(tǒng)數(shù)學最重要的著作,約成書于四、五世紀.現(xiàn)在傳本的《孫子算經(jīng)》共三卷.卷上敘述算籌記數(shù)的縱橫相間制度和籌算乘除法則;卷中舉例說明籌算分數(shù)算法和籌算開平方法;卷下記錄算題,不但提供了答案,而且還給出了解法.其中記載:“今有木,不知長短.引繩度之,余繩四尺五,屈繩量之,不足一尺.問木長幾何?”
譯文:“用一根繩子去量一根長木,繩子還剩余4.5尺,將繩子對折再量長木,長木還剩余1尺,問長木長多少尺?”
請解答上述問題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于,兩點,且點的橫坐標和點的縱坐標都是,求:
一次函數(shù)的解析式;(2)的面積.
根據(jù)圖象回答:當為何值時,一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,在△ABC中,∠A是銳角,點D,E分別在AB,AC上,且∠DCB=∠EBC=∠A,BE與CD相交于點O,探究BD與CE之間的數(shù)量關系,并證明你的結(jié)論.
(2)已知四邊形ABCD,連接AC、BD交于O,且滿足條件:AB+CD=AD+BC,AB2+AD2=BC2+DC2,請?zhí)骄?/span>AC與BD的關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學舉辦“網(wǎng)絡安全知識答題競賽”,七、八年級根據(jù)初賽成績各選出5名選手組成代表隊參加決賽,兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.
平均分(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差(分2) | |
七年級 | a | 85 | b | S七年級2 |
八年級 | 85 | c | 100 | 160 |
(1)根據(jù)圖示填空:a= ,b= ,c= ;
(2)結(jié)合兩隊成績的平均數(shù)和中位數(shù)進行分析,哪個代表隊的決賽成績較好?
(3)計算七年級代表隊決賽成績的方差S七年級2,并判斷哪一個代表隊選手成績較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是在同一平面直角坐標系內(nèi),二次函數(shù)y=ax2+(a+c)x+c與一次函數(shù)y=ax+c的大致圖象,正確的是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在大課間活動中,同學們積極參加體育鍛煉,小明就本班同學“我最喜愛的體育項目”進行了一次調(diào)查統(tǒng)計,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,解答以下問題:
(1)該班共有_____名學生;
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,“乒乓球”部分所對應的圓心角度數(shù)為_____;
(4)學校將舉辦體育節(jié),該班將推選5位同學參加乒乓球活動,有3位男同學(A,B,C)和2位女同學(D,E),現(xiàn)準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的網(wǎng)格紙中,建立了平面直角坐標系,點,點,,.
以點為對稱中心,畫出,使與關于點對稱,并寫出下列點的坐標:________,________;
多邊形的面積是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“面積法”是指利用圖形面積間的等量關系尋求線段間等量關系的一種方法.例如:在△ABC中,AB=AC,點P是BC所在直線上一個動點,過P點作PD⊥AB、PE⊥AC,垂足分別為D、E,BF為腰AC上的高.如圖①,當點P在邊BC上時,我們可得如下推理:
∵S△ABC=S△ABP+S△ACP
∴ACBF=ABPD+ACPE
∵AB=AC
∴ACBF=AC(PD+PE)
∴BF=PD+PE
(1)(變式)如圖②,在上例的條件下,當點P運動到BC的延長線上時,試探究BF、PD、PE之間的關系,并說明理由.
(2)(遷移)如圖③,點P是等邊△ABC內(nèi)部一點,作PD⊥AB、PE⊥BC、PF⊥AC,垂足分別為D、E、F,若PD=1,PE=2,PF=4.求△ABC的邊長.
(3)(拓展)若點P是等邊△ABC所在平面內(nèi)一點,且點P到三邊所在直線的距離分別為2、3、6.請直接寫出等邊△ABC的高的所有可能
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,以AB為直角邊作等腰直角三角形ABD,與BC邊交于點E,
(1)若∠ACE=18°,則∠ECD=
(2)探索:∠ACE與∠ACD有怎樣的數(shù)量關系?猜想并證明.
(3)如圖2,作△ABC的高AF并延長,交BD于點G,交CD延長線于點H,求證:CH2+DH2=2AD2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com