【題目】如圖1,在 中, , .點O是BC的中點,點D沿B→A→C方向從B運動到C.設(shè)點D經(jīng)過的路徑長為 ,圖1中某條線段的長為y,若表示y與x的函數(shù)關(guān)系的大致圖象如圖2所示,則這條線段可能是圖1中的( )
A.
B.
C.
D.
【答案】C
【解析】當(dāng)點D在AB上,則線段BD表示為y=x,線段AD表示為y=ABx為一次函數(shù),不符合圖象;
同理當(dāng)點D在AC上,也為為一次函數(shù),不符合圖象;
如圖,作OE⊥AB,
∵點O是BC中點,設(shè)AB=AC=a,∠BAC=120.
∴AO= ,BO= ,OE= ,BE= ,
設(shè)BD=x,OD=y,AB=AC=a,
∴DE= x,
在Rt△ODE中,
DE2+OE2=OD2 ,
∴y2=( x)2+( )2
整理得:y2=x2 x+ a2 ,
當(dāng)0<xa時,y2=x2 x+ a2 , 函數(shù)的圖象呈拋物線并開口向上,
由此得出這條線段可能是圖1中的OD.
答案為:C
可逐項分析,分段分析,A、B答案對應(yīng)的函數(shù)為一次函數(shù),圖像是直線型,D答案對應(yīng)的OD長 應(yīng)一直是減小的,與圖像不符,因此C答案可分段分析,與圖像最接近.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線PT與⊙O相切于點T,直線PO與⊙O相交于A,B兩點.
(1)求證:PT2=PAPB;
(2)若PT=TB= ,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)為A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC繞原點逆時針旋轉(zhuǎn)90°,得到△A1B1C1 , △A1B1C1向右平移6個單位,再向上平移2個單位得到△A2B2C2 .
(1)畫出△A1B1Cl和△A2B2C2;
(2)P(a,b)是△ABC的AC邊上一點,△ABC經(jīng)旋轉(zhuǎn)、平移后點P的對應(yīng)點分別為P1、P2 , 請寫出點P1、P2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,⊙A的圓心A的坐標(biāo)為(﹣1,0),半徑為1,點P為直線y=﹣ x+3上的動點,過點P作⊙A的切線,切點為Q,則切線長PQ的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,AB=10,BC=5,BN平分∠ABC交CD于點N,交AD的延長線于點M,則下列結(jié)論:①DM=5;②線段BM、CD互相平分;③BD⊥AM;④△BCN是等邊三角形;⑤AN⊥BM,其中正確的有______________(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題學(xué)習(xí)】小蕓在小組學(xué)習(xí)時問小娟這樣一個問題:已知α為銳角,且sinα= ,求sin2α的值.小娟是這樣給小蕓講解的:
構(gòu)造如圖1所示的圖形,在⊙O中,AB是直徑,點C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.設(shè)∠BAC=α,則sinα= ,可設(shè)BC=x,則AB=3x,….
(1)【問題解決】
請按照小娟的思路,利用圖1求出sin2α的值;(寫出完整的解答過程)
(2)如圖2,已知點M,N,P為⊙O上的三點,且∠P=β,sinβ= ,求sin2β的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC≌△ADE,BC的延長線交AD于點M,交DE于點F.若∠D=25°,∠AED=105°,∠DAC=10°,求∠DFB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)了正方形之后,給同桌小文出了道題,從下列四個條件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中選兩個作為補充條件,使ABCD為正方形(如圖),現(xiàn)有下列四種選法,你認(rèn)為其中錯誤的是( )
A.①②B.②③C.①③D.②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com