如圖所示,已知Rt△ABC中,AB=AC,BD平分∠ABC,CE⊥BD交BD延長線于E,BA、CE延長線相交于F點(diǎn).
求證:(1)△BCF是等腰三角形;(2)BD=2CE.

證明:(1)∵BD平分∠ABC,
∴∠FBE=∠CBE.
∵CE⊥BD,
∴∠BEF=∠BEC=90°,
又∵BE=BE,
∴△BEF≌△BEC,
∴BF=BC,即△BCF等腰三角形.

(2)∵BF=BC,CE⊥BD,
∴CF=2CE=2EF,
∵∠ABD+∠ADB=90°,∠ABD+∠AFE=90°,
∴∠ADB=∠BFE,
又∵AB=AC,∠BAD=∠CAF=90°,
∴△ABD≌△ACF,
∴BD=CF=2CE.
分析:根據(jù)已知利用AAS判定△BEF≌△BEC,從而得到BF=BC,即△BCF等腰三角形;
由已知可得CF=2CE=2EF,利用AAS判定△ABD≌△ACF,從而得到BD=CF=2CE.
點(diǎn)評:此題主要考查了等腰三角形的判定及全等三角形的判定;三角形全等的證明是正確解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知Rt△ABC中,∠C=90°,沿過B點(diǎn)的一條直線BE折疊這個三角形,使C點(diǎn)落在A精英家教網(wǎng)B邊上的點(diǎn)D、要使點(diǎn)D恰為AB的中點(diǎn),問在圖中還要添加什么條件?(直接填寫答案)
(1)寫出兩條邊滿足的條件:
 
;
(2)寫出兩個角滿足的條件:
 
;
(3)寫出一個除邊、角以外的其他滿足條件:
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖所示,已知Rt△ABC中,∠C=90°,沿過B點(diǎn)的一條直線BE折疊這個三角形,使C點(diǎn)落在AB邊上的點(diǎn)D.要使點(diǎn)D恰為AB的中點(diǎn),問在圖中還要添加什么條件?(直接填寫答案)
(1)寫出兩條邊滿足的條件:
①AB=2BC或②BE=AE等

(2)寫出兩個角滿足的條件:
①∠A=30°或②∠A=∠DBE等

(3)寫出一個除邊、角以外的其他滿足條件:
△BEC≌△AED等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖所示,已知Rt△ABC中,AB=AC,BD平分∠ABC,CE⊥BD交BD延長線于E,BA、CE延長線相交于F點(diǎn).
求證:(1)△BCF是等腰三角形;(2)BD=2CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知Rt△ABC中,∠B=90°,AB=3,BC=4,D、E、F分別是三邊AB、BC、AC上的點(diǎn),則DE+EF+FD的最小值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知Rt△ABC中,∠B=90°,AB=3,BC=4,D,E,F(xiàn)分別是三邊AB,BC,CA上的點(diǎn),則DE+EF+FD的最小值為( 。
A、
12
5
B、
24
5
C、5
D、6

查看答案和解析>>

同步練習(xí)冊答案