【題目】若三角形三邊長為整數(shù),周長為11,且有一邊長為4,則此三角形中最長的邊是( 。
A.7
B.6
C.5
D.4

【答案】C
【解析】周長為11,且一邊長為4,這一邊不是最長邊,則另兩邊的和是7,
設最長的邊長是x,則另一邊是7-x,
根據(jù)三角形的三邊關系得到:7-x+4>x,
解得:x<5.5,
∵x是整數(shù),
∴x=5.
故選C.
【考點精析】根據(jù)題目的已知條件,利用三角形三邊關系的相關知識可以得到問題的答案,需要掌握三角形兩邊之和大于第三邊;三角形兩邊之差小于第三邊;不符合定理的三條線段,不能組成三角形的三邊.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等腰△ABC,AC=BC=10.AB=12,以BC為直徑作⊙O交AB于點D,交AC于點G,DF⊥AC,垂足為F,交CB的延長線于點E.

(1)求證:直線EF是⊙O的切線;

(2)求DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+cx軸交于A、B兩點,B點坐標為(3,0),與y軸交于點C0,﹣3

1)求拋物線的解析式;

2)點P在拋物線位于第四象限的部分上運動,當四邊形ABPC的面積最大時,求點P的坐標和四邊形ABPC的最大面積.

3)直線l經(jīng)過A、C兩點,點Q在拋物線位于y軸左側的部分上運動,直線m經(jīng)過點B和點Q,是否存在直線m,使得直線l、mx軸圍成的三角形和直線lmy軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CD翻折,使點A落在AB上的點E處;再將邊BC沿CF翻折,使點B落在CE的延長線上的點B處,兩條折痕與斜邊AB分別交于點D、F,則線段BF的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC ,AB=4,BC=6,∠B=60°,ABC沿著射線BC 的方向平移 2 個單位后,得到ABC′,連接 AC,ABC 的周長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD是正方形,AC與BD,相交于點O,點E、F是直線AD上兩動點,且AE=DF,CF所在直線與對角線BD所在直線交于點G,連接AG,直線AG交BE于點H.

(1)如圖1,當點E、F在線段AD上時,①求證:∠DAG=∠DCG;②猜想AG與BE的位置關系,并加以證明;

(2)如圖2,在(1)條件下,連接HO,試說明HO平分∠BHG;

(3)當點E、F運動到如圖3所示的位置時,其它條件不變,請將圖形補充完整,并直接寫出∠BHO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函數(shù)y=在第一象限內(nèi)的圖象分別交OA,AB于點C和點D,且△BOD的面積=4.

(1)求直線AO的解析式;

(2)求反比例函數(shù)解析式;

(3)求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB、CD為兩個建筑物,建筑物AB的高度為60米,從建筑物AB的頂點A點測得建筑物CD的頂點C點的俯角∠EAC為30°,測得建筑物CD的底部D點的俯角∠EAD為45°.

(1)求兩建筑物底部之間水平距離BD的長度;

(2)求建筑物CD的高度(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】順次連接對角線相等的四邊形的各邊中點,所得圖形一定是( )

A. 平行四邊形B. 矩形C. 菱形D. 正方形

查看答案和解析>>

同步練習冊答案