【題目】△ABC中,D為線(xiàn)段BC的中點(diǎn),AB=2AC=2,tan∠CAD=sin∠BAC,則BC=

【答案】
【解析】解:如圖,
設(shè)∠CAD=α,∠BAD=β,則∠CAB=α+β.
則有 , ,且sin∠ADC=sin∠ADB,AB=2AC,可得sinα=2sinβ.
由題意知tan∠CAD=sin∠CAB,即tanα=sin(α+β).
切化弦可得 ,
故sinα=sin(α+β)cosα,從而可得2sinβ=sin(α+β)cosα,
利用角的變形可得2sin[(α+β)﹣α]=sin(α+β)cosα,
展開(kāi)得sin(α+β)cosα=2cos(α+β)sinα,兩邊同除以cosα(cosα≠0)
可得sin(α+β)=2cos(α+β)tanα,又因?yàn)閠anα=sin(α+β),
化簡(jiǎn)得2cos(α+β)=1,故
所以BC2=AB2+AC2﹣2ABACcos(α+β)=3,故
所以答案是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,線(xiàn)段AB的兩個(gè)端點(diǎn)是A(﹣5,1),B(﹣2,3),線(xiàn)段CD的兩個(gè)端點(diǎn)是C(﹣5,﹣1),D(﹣2,﹣3).
(1)線(xiàn)段AB與線(xiàn)段CD關(guān)于直線(xiàn)對(duì)稱(chēng),則對(duì)稱(chēng)軸是;
(2)平移線(xiàn)段AB得到線(xiàn)段A1B1 , 若點(diǎn)A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)為(1,2),畫(huà)出平移后的線(xiàn)段A1B1 , 并寫(xiě)出點(diǎn)B1的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)數(shù)學(xué)興趣小組為了解本校學(xué)生對(duì)電視節(jié)目的喜愛(ài)情況,隨機(jī)調(diào)查了部分學(xué)生最喜愛(ài)哪一類(lèi)節(jié)目 (被調(diào)查的學(xué)生只選一類(lèi)并且沒(méi)有不選擇的),并將調(diào)查結(jié)果制成了如下的兩個(gè)統(tǒng)計(jì)圖(不完整).請(qǐng)你根據(jù)圖中所提供的信息,完成下列問(wèn)題:

(1)求本次調(diào)查的學(xué)生人數(shù);
(2)請(qǐng)將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整,并求出新聞節(jié)目在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);
(3)若該中學(xué)有2000名學(xué)生,請(qǐng)估計(jì)該校喜愛(ài)電視劇節(jié)目的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=2an﹣2 (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn= ,求數(shù)列{bn}前n項(xiàng)和Tn

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)雙曲線(xiàn)x2 =1的右支上一點(diǎn)P,分別向圓C1:(x+4)2+y2=4和圓C2:(x﹣4)2+y2=1作切線(xiàn),切點(diǎn)分別為M,N,則|PM|2﹣|PN|2的最小值為(
A.10
B.13
C.16
D.19

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣x,g(x)=ex﹣ax﹣1(e為自然對(duì)數(shù)的底數(shù)).
(1)討論函數(shù)g(x)的單調(diào)性;
(2)當(dāng)x>0時(shí),f(x)≤g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}滿(mǎn)足a1=1,(a1+a2)+(a2+a3)+(a3+a4)+…+(an+an+1)=2n+1﹣2,則a8=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點(diǎn).

(1)求該拋物線(xiàn)的解析式;
(2)設(shè)(1)中的拋物線(xiàn)交y軸與C點(diǎn),在該拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最小?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在(1)中的拋物線(xiàn)上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=6,AD=3,點(diǎn)P是邊AD上的一點(diǎn),聯(lián)結(jié)BP,將△ABP沿著B(niǎo)P所在直線(xiàn)翻折得到△EBP,點(diǎn)A落在點(diǎn)E處,邊BE與邊CD相交于點(diǎn)G,如果CG=2DG,那么DP的長(zhǎng)是

查看答案和解析>>

同步練習(xí)冊(cè)答案