【題目】如圖,在口ABCD中,AB⊥AC,AB=1,BC=,對角線BD、AC交于點O.將直線AC繞點O順時針旋轉分別交BC、AD于點E、F.
(1)試說明在旋轉過程中,AF與CE總保持相等;
(2)證明:當旋轉角為90時,四邊形ABEF是平行四邊形;
(3)在旋轉過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,求出此時AC繞點O順時針旋轉的角度.
【答案】(1)理由見解析;(2)證明見解析;(3)理由見解析;旋轉角為45°.
【解析】
試題分析:(1)根據平行四邊形的對邊平行可得AD∥BC,對角線互相平分可得OA=OC,再根據兩直線平行,內錯角相等求出∠1=∠2,然后利用“角邊角”證明△AOF和△COE全等,根據全等三角形對應邊相等即可得到AF=CE;
(2)根據垂直的定義可得∠BAO=90°,然后求出∠BAO=∠AOF,再根據內錯角相等,兩直線平行可得AB∥EF,然后根據平行四邊形的對邊平行求出AF∥BE,再根據兩組對邊分別平行的四邊形是平行四邊形證明;
(3)根據(1)的結論可得AF=CE,再求出DF∥BE,DF=BE,然后根據一組對邊平行且相等的四邊形是平行四邊形求出四邊形BEDF平行四邊形,再求出對角線互相垂直的平行四邊形是菱形可得EF⊥BD時,四邊形BEDF是菱形;根據勾股定理列式求出AC=2,再根據平行四邊形的對角線互相平分求出AO=1,然后求出∠AOB=45°,再根據旋轉的定義求出旋轉角即可.
試題解析:(1)在ABCD中,AD∥BC,OA=OC,
∴∠1=∠2,
在△AOF和△COE中,
,
∴△AOF≌△COE(ASA),
∴AF=CE;
(2)由題意,∠AOF=90°(如圖2),
又∵AB⊥AC,
∴∠BAO=90°,
∠AOF=90°,
∴∠BAO=∠AOF,
∴AB∥EF,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,
即:AF∥BE,
∵AB∥EF,AF∥BE,
∴四邊形ABEF是平行四邊形;
(3)當EF⊥BD時,四邊形BEDF是菱形(如圖3).
∵ABCD,AF=CE,
∴AD∥BC,AD=BC,
∴DF∥BE,DF=BE,
∴四邊形BEDF是平行四邊形,
又∵EF⊥BD,
∴BEDF是菱形,
∵AB⊥AC,
∴在△ABC中,∠BAC=90°,
∴BC2=AB2+AC2,
∵AB=1,BC=,
∴AC=,
∵四邊形ABCD是平行四邊形,
∴OA=AC=×2=1,
∵在△AOB中,AB=AO=1,∠BAO=90°,
∴∠1=45°,
∵EF⊥BD,
∴∠BOF=90°,
∴∠2=∠BOF-∠1=90°-45°=45°,
即:旋轉角為45°.
科目:初中數學 來源: 題型:
【題目】演唱比賽,7位評委給1號選手的評分如下:9.3,8.9,9.2,9.4,9.2,9.7,9.4,規(guī)定去掉一個最高分和一個最低分,剩余得分的平均數作選手的最后得分.那么,1號選手的最后得分是________分.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,Rt△ABC的三個頂點A(﹣2,2),B(0,5),C(0,2).
(1)將△ABC以點C為旋轉中心旋轉180°,得到△A1B1C,請畫出△A1B1C的圖形.
(2)平移△ABC,使點A的對應點A2坐標為(﹣2,﹣6),請畫出平移后對應的△A2B2C2的圖形.
(3)若將△A1B1C繞某一點旋轉可得到△A2B2C2,請直接寫出旋轉中心的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,正方形ABCD的邊AD在y軸上,拋物線y=a(x﹣2)2﹣1經過點A、B,與x相交于點E、F,且其頂點M在CD上.
(1)請直接寫出點A的坐標 ,并寫出a的值 ;
(2)若點P是拋物線上一動點(點P不與點A、點B重合),過點P作y軸的平行線l與直線AB交于點G,與直線BD交于點H,如圖2.
①當線段PH=2GH時,求點P的坐標;
②當點P在直線BD下方時,點K在直線BD上,且滿足△KPH∽△AEF,求△KPH周長的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com