【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點(diǎn) D 為 AB的中點(diǎn).
(1)如果點(diǎn) P 在線段 BC 上以 1cm/s 的速度由點(diǎn) B 向點(diǎn) C 運(yùn)動(dòng),同時(shí),點(diǎn) Q 在線段 CA 上由點(diǎn) C 向點(diǎn) A 運(yùn)動(dòng).
①若點(diǎn) Q 的運(yùn)動(dòng)速度與點(diǎn) P 的運(yùn)動(dòng)速度相等,經(jīng)過 1 秒后,△BPD 與△CQP 是否全等,請說明理由;
②若點(diǎn) Q 的運(yùn)動(dòng)速度與點(diǎn) P 的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn) Q 的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD 與△CQP 全等?
(2)若點(diǎn) Q 以②中的運(yùn)動(dòng)速度從點(diǎn) C 出發(fā),點(diǎn) P 以原來的運(yùn)動(dòng)速度從點(diǎn) B 同時(shí)出發(fā),都逆時(shí)針沿△ABC 三邊運(yùn)動(dòng),則經(jīng)過 后,點(diǎn) P 與點(diǎn) Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)
【答案】(1)①全等,理由見解析②1.5cm/s理由見解析(2)24s后在AC邊相遇
【解析】
試題(1)①根據(jù)時(shí)間和速度分別求得兩個(gè)三角形中BP、CQ和BD、PC邊的長,根據(jù)SAS判定兩個(gè)三角形全等.
②根據(jù)全等三角形應(yīng)滿足的條件探求邊之間的關(guān)系,再根據(jù)路程=速度×時(shí)間公式,先求得點(diǎn)P運(yùn)動(dòng)的時(shí)間,再求得點(diǎn)Q的運(yùn)動(dòng)速度;
(2)根據(jù)題意結(jié)合圖形分析發(fā)現(xiàn):由于點(diǎn)Q的速度快,且在點(diǎn)P的前邊,所以要想第一次相遇,則應(yīng)該比點(diǎn)P多走等腰三角形的兩個(gè)邊長.
解:(1)①全等,理由如下:
∵t=1秒,
∴BP=CQ=1×1=1厘米,
∵AB=6cm,點(diǎn)D為AB的中點(diǎn),
∴BD=3cm.
又∵PC=BC﹣BP,BC=4cm,
∴PC=4﹣1=3cm,
∴PC=BD.
又∵AB=AC,
∴∠B=∠C,
∴△BPD≌△CQP;
②假設(shè)△BPD≌△CQP,
∵vP≠vQ,
∴BP≠CQ,
又∵△BPD≌△CQP,∠B=∠C,則BP=CP=2,BD=CQ=3,
∴點(diǎn)P,點(diǎn)Q運(yùn)動(dòng)的時(shí)間t==2秒,
∴vQ===1.5cm/s;
(2)設(shè)經(jīng)過x秒后點(diǎn)P與點(diǎn)Q第一次相遇,
由題意,得 1.5x=x+2×6,
解得x=24,
∴點(diǎn)P共運(yùn)動(dòng)了24s×1cm/s=24cm.
∵24=2×12,
∴點(diǎn)P、點(diǎn)Q在AC邊上相遇,
∴經(jīng)過24秒點(diǎn)P與點(diǎn)Q第一次在邊AC上相遇.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直立于地面上的電線桿AB,在陽光下落在水平地面和坡面上的影子分別是BC、CD,測得BC=6米,CD=4米,∠BCD=150°,在D處測得電線桿頂端A的仰角為30°,試求電線桿的高度(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點(diǎn)A在反比例函數(shù)y= 的圖象上.若點(diǎn)B在反比例函數(shù)y= 的圖象上,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩校參加區(qū)教育局舉辦的學(xué)生英語口語競賽,兩校參賽人數(shù)相等.比賽結(jié)束后,發(fā)現(xiàn)學(xué)生成績分別為7分、8分、9分、10分(滿分為10分).依據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計(jì)圖表.
(1)在圖1中,“7分”所在扇形的圓心角等于°.
(2)請你將圖2的統(tǒng)計(jì)圖補(bǔ)充完整;
(3)經(jīng)計(jì)算,乙校的平均分是8.3分,中位數(shù)是8分,請寫出甲校的平均分、中位數(shù);并從平均分和中位數(shù)的角度分析哪個(gè)學(xué)校成績較好.
(4)如果該教育局要組織8人的代表隊(duì)參加市級團(tuán)體賽,為便于管理,決定從這兩所學(xué)校中的一所挑選參賽選手,請你分析,應(yīng)選哪所學(xué)校?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠ACD是△ABC的外角,∠A=40°,BE平分∠ABC,CE平分∠ACD,且BE、CE交于點(diǎn)E.
(1)求∠E的度數(shù).
(2)請猜想∠A與∠E之間的數(shù)量關(guān)系,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列條件中,不能證明△ABC≌△DCB是 ( 。
A. AB=DC,AC=DB B. AB=DC,∠ABC=∠DCB
C. DB=AC,∠DBC=∠ACB D. DC=AB,∠DBC=∠ACB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=AC.
(1)如圖1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求證:CD=BE;
(2)如圖2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=3,CD=4,求BD的長;
(3)如圖3,在△ADE中,當(dāng)BD垂直平分AE于H,且∠BAC=2∠ADB時(shí),試探究CD2,BD2,AH2之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校學(xué)生的身高情況,隨機(jī)抽取該校若干男生、女生進(jìn)行抽樣調(diào)查.已知抽取的樣本中,男生、女生人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計(jì)表和統(tǒng)計(jì)圖(如圖20-3-2所示):
身高情況分組表(單位:cm)
組別 | 身高 |
A | x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | x≥170 |
根據(jù)圖表提供的信息,回答下列問題:
(1)樣本中,男生身高的眾數(shù)在___________組,中位數(shù)在___________組;
(2)樣本中,女生身高在E組的有___________人;
(3)已知該校共有男生400人、女生380人,請估計(jì)身高在160≤x<170范圍內(nèi)的學(xué)生約有多少人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com