精英家教網(wǎng)如圖,⊙O1與⊙O2的半徑之比為(
2
-1)
:1,它們外切于點(diǎn)P,弧APB與弧CPO的弧長(zhǎng)之和為5π,則O1O2=
 
分析:先根據(jù)題意求出AO1=AO2,再根據(jù)勾股定理求得AO1=r,由已知條件,可得r=5
2
,從而求出O1O2的長(zhǎng).
解答:精英家教網(wǎng)解:連接AO2,BO2,如圖,
設(shè)AO2=r,則CO1=(
2
-1)r,
由勾股定理得:AO12=O1O22-AO22,即AO12=[(
2
-1)r+r]2-r2,整理得AO1=r,
∴∠AO1O2=∠AO2O1=45°,∠AO1B=∠AO2B=90°,
∵弧APB與弧CPO的弧長(zhǎng)之和為5π,
1
2
π(
2
-1)r+
1
2
πr=5π,解得r=5
2
,
∴O1O2=(
2
-1)r+r=10.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn):勾股定理的應(yīng)用,弧長(zhǎng)公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、已知:如圖,⊙O1與⊙O2外切于點(diǎn)P,直線AB過(guò)點(diǎn)P交⊙O1于A,交⊙O2于B,點(diǎn)C、D分別為⊙O1、⊙O2上的點(diǎn),且∠ACP=65°,則∠BDP=
65
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,⊙O1與⊙O2外切于M點(diǎn),AF是兩圓的外公切線,A、B是切點(diǎn),DF經(jīng)過(guò)O1、O2,分別交⊙O1于D、⊙O2于E,AC是⊙O1的直徑,BC經(jīng)過(guò)M點(diǎn),連接AD.
(1)求證:AD∥BC;
(2)求證:MF2=AF•BF;
(3)如果⊙O1的直徑長(zhǎng)為8,tan∠ACB=
34
,求⊙O2的直徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,⊙O1與⊙O2相交于C、D兩點(diǎn),⊙O1的割線PAB與DC的延長(zhǎng)線交于點(diǎn)P,PN與⊙O2相切于點(diǎn)N,若PB=10,AB=6,則PN=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,⊙O1與⊙O2外切于A點(diǎn),直線l與⊙O1、⊙O2分別切于B,C點(diǎn),若⊙O1的半徑r1=2cm,⊙O2的半徑r2=3cm.求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知如圖:⊙O1與⊙O2相交于AB兩點(diǎn),過(guò)點(diǎn)A、B的直線分別與⊙O1交于C、E,與⊙O2交于D、F,連接CE、DF.
求證:CE∥DF.

查看答案和解析>>

同步練習(xí)冊(cè)答案