如圖,△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC內(nèi)一點(diǎn),且∠1=∠2,則∠BPC等于( 。
分析:根據(jù)∠A=40°的條件,求出∠ACB+∠ABC的度數(shù),再根據(jù)∠ABC=∠ACB,∠1=∠2,求出∠PBA=∠PCB,于是可求出∠1+∠ABP=∠PCB+∠2,然后根據(jù)三角形的內(nèi)角和定理求出∠BPC的度數(shù).
解答:解:∵∠A=40°,
∴∠ACB+∠ABC=180°-40°=140°,
又∵∠ABC=∠ACB,∠1=∠2,
∴∠PBA=∠PCB,
∴∠1+∠ABP=∠PCB+∠2=140°×
1
2
=70°,
∴∠BPC=180°-70°=110°.
故選A.
點(diǎn)評(píng):此題不僅考查了三角形的內(nèi)角和定理,還考查了同學(xué)們的整體思維能力,有一定難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案