【題目】如圖,在平面直角坐標(biāo)系中,直線x軸交于點(diǎn)A1,與y軸交于點(diǎn)A2,過(guò)點(diǎn)A1x軸的垂線交直線于點(diǎn)B1,過(guò)點(diǎn)A1A1B1的垂線交y軸于點(diǎn)B2,此時(shí)點(diǎn)B2與原點(diǎn)O重合,連接A2B1x軸于點(diǎn)C1,得到第1個(gè);過(guò)點(diǎn)A2y軸的垂線交l2于點(diǎn)B3,過(guò)點(diǎn)B3y軸的平行線交l1于點(diǎn)A3,連接A3B2A2B3交于點(diǎn)C2,得到第2個(gè)……按照此規(guī)律進(jìn)行下去,則第2019個(gè)的面積是________

【答案】

【解析】

根據(jù)待定系數(shù)法得到一次函數(shù)解析式,再根據(jù)相似三角形的判定和性質(zhì)得到,則,,則的面積

x軸交于點(diǎn)A1,與y軸交于點(diǎn)A2,

,

中,當(dāng)時(shí),,

,

設(shè)直線A2B1的解析式為:,

可得:,

解得:,

∴直線A2B1的解析式為:

,可得:

,

,

,

,

同理可得:,

的面積

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程

(1)試證:無(wú)論m取任何實(shí)數(shù),方程都有兩個(gè)不相等的實(shí)數(shù)根.

(2)若方程有一個(gè)根為-4,求m的值及另一根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)平面內(nèi),二次函數(shù)圖象的頂點(diǎn)為A1﹣4),且過(guò)點(diǎn)B30).

1)求該二次函數(shù)的解析式;

2)將該二次函數(shù)圖象向右平移幾個(gè)單位,可使平移后所得圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)?并直接寫出平移后所得圖象與x軸的另一個(gè)交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩形ABCD的一條邊AD=8,EBC邊上的一點(diǎn),將矩形ABCD沿折痕AE折疊,使得頂點(diǎn)B落在CD邊上的點(diǎn)P處,PC=4(如圖1).

1)求AB的長(zhǎng);

2)擦去折痕AE,連結(jié)PB,設(shè)M是線段PA的一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)P、A不重合).NAB沿長(zhǎng)線上的一個(gè)動(dòng)點(diǎn),并且滿足PM=BN.過(guò)點(diǎn)MMH⊥PB,垂足為H,連結(jié)MNPB于點(diǎn)F(如圖2).

MPA的中點(diǎn),求MH的長(zhǎng);

試問(wèn)當(dāng)點(diǎn)MN在移動(dòng)過(guò)程中,線段FH的長(zhǎng)度是否發(fā)生變化?若變化,說(shuō)明理由;若不變,求出線段FH的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】山西特產(chǎn)專賣店銷售核桃,其進(jìn)價(jià)為每千克40元,按每千克60元出售,平均每天可售出100千克,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請(qǐng)回答:

(1)每千克核桃應(yīng)降價(jià)多少元?

(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該店應(yīng)按原售價(jià)的幾折出售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在中,,,點(diǎn)MAB的中點(diǎn),連接MC,點(diǎn)P是線段BC延長(zhǎng)線上一點(diǎn),且,連接MPAC于點(diǎn)H.將射線MP繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)交線段CA的延長(zhǎng)線于點(diǎn)D

1)找出與相等的角,并說(shuō)明理由.

2)如圖2,求的值.

3)在(2)的條件下,若,求線段AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD和正方形CEFC中,點(diǎn)DCG上,BC1,CE3,HAF的中點(diǎn),EHCF交于點(diǎn)O.則HE的長(zhǎng)為(  )

A. 2B. C. 2D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,利用一面墻(EF最長(zhǎng)可利用28),圍成一個(gè)矩形花園ABCD.與墻平行的一邊BC上要預(yù)留2米寬的入口(如圖中MN所示,不用砌墻).現(xiàn)有砌60米長(zhǎng)的墻的材料.

(1)當(dāng)矩形的長(zhǎng)BC為多少米時(shí),矩形花園的面積為300平方米;

(2)能否圍成480平方米的矩形花園,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長(zhǎng)交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2.

(1)求OD的長(zhǎng).

(2)求EC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案