【題目】如圖,OA、OB分別是線段MC、MD的垂直平分線,MD=5cm,MC=7cm,CD=10cm,一只小螞蟻從點(diǎn)M出發(fā)爬到OA邊上任意一點(diǎn)E,再爬到OB邊上任意一點(diǎn)F,然后爬回M點(diǎn)處,則小螞蟻爬行的路徑最短可為(
A.12cm
B.10cm
C.7cm
D.5cm

【答案】B
【解析】解:設(shè)CD與OA 的交點(diǎn)為E,與OB的交點(diǎn)于F, ∵OA、OB分別是線段MC、MD的垂直平分線,
∴ME=CE,MF=DF,
∴小螞蟻爬行的路徑最短=CD=10cm,
故選B.
【考點(diǎn)精析】關(guān)于本題考查的線段垂直平分線的性質(zhì),需要了解垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC和△DBE均為等腰直角三角形.
(1)求證:AD=CE;
(2)猜想:AD和CE是否垂直?若垂直,請(qǐng)說明理由;若不垂直,則只要寫出結(jié)論,不用寫理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠1+∠2=180°,∠3=∠B.
(Ⅰ)求證:AB∥EF;
(Ⅱ)試判斷DE與BC的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形ABCD中,AB∥OC,BC∥AO,A、C兩點(diǎn)的坐標(biāo)分別為(﹣ , )、(﹣2 ,0),A、B兩點(diǎn)間的距離等于O、C兩點(diǎn)間的距離.

(1)點(diǎn)B的坐標(biāo)為;
(2)將這個(gè)四邊形向下平移2 個(gè)單位長度后得到四邊形A′B′C′O′,請(qǐng)你寫出平移后四邊形四個(gè)頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知MAN=135°,正方形ABCD繞點(diǎn)A旋轉(zhuǎn).

(1)當(dāng)正方形ABCD旋轉(zhuǎn)到MAN的外部(頂點(diǎn)A除外)時(shí),AM,AN分別與正方形ABCD的邊CB,CD的延長線交于點(diǎn)M,N,連接MN.

如圖1,若BM=DN,則線段MN與BM+DN之間的數(shù)量關(guān)系是 ;

如圖2,若BM≠DN,請(qǐng)判斷中的數(shù)量關(guān)系是否仍成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由;

(2)如圖3,當(dāng)正方形ABCD旋轉(zhuǎn)到MAN的內(nèi)部(頂點(diǎn)A除外)時(shí),AM,AN分別與直線BD交于點(diǎn)M,N,探究:以線段BM,MN,DN的長度為三邊長的三角形是何種三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,OE,OD分別平分∠AOC和∠BOC,

(1)如果∠AOB=90°,∠BOC=40°,求∠DOE的度數(shù);
(2)如果∠AOB= ,∠BOC= 、 均為銳角, ),其他條件不變,求∠DOE;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=(x22的對(duì)稱軸是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】能夠找到一點(diǎn),使該點(diǎn)到各邊的距離相等的為( 。倨叫兴倪呅;②菱形;③矩形;④正方形.

A.①與②B.②與③C.②與④D.③與④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下面給出的數(shù)軸,解答下面的問題:

(1)請(qǐng)你根據(jù)圖中A,B兩點(diǎn)的位置,分別寫出它們所表示的有理數(shù).
(2)請(qǐng)問A,B兩點(diǎn)之間的距離是多少?
(3)在數(shù)軸上畫出與點(diǎn)A的距離為2的點(diǎn)(用不同于A,B的其它字母表示),并寫出這些點(diǎn)表示的數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案