如圖,已知反比例函數(shù)的圖象與一次函數(shù)y=k2x+b的圖象交于A、B兩點(diǎn),A(2,n),B(-1,-2).
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)在直線AB上是否存在一點(diǎn)P,使△APO∽△AOB?若存在,求P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】分析:根據(jù)待定系數(shù)法求函數(shù)解析式,并假設(shè)滿足條件的p點(diǎn)存在,根據(jù)相似就可以求出P的位置.
解答:解:(1)∵雙曲線過點(diǎn)(-1,-2)
∴k1=-1×(-2)=2
∵雙曲線過點(diǎn)(2,n)
∴n=1
由直線y=k2x+b過點(diǎn)A,B得,
解得
∴反比例函數(shù)關(guān)系式為y=,一次函數(shù)關(guān)系式為y=x-1.

(2)存在符合條件的點(diǎn)P,
理由如下:∵A(2,1),B(-1,-2),
∴OA==,AB==3,
∵△APO∽△AOB
,
∴AP=,
如圖,設(shè)直線AB與x軸、y軸分別相交于點(diǎn)C、D,過P點(diǎn)作PE⊥x軸于點(diǎn)E,連接OP,作AF⊥x軸,BG⊥x軸,DH⊥BG.
在直線y=x-1中,令x=0,解得:y=-1,則D的坐標(biāo)是:(0,-1);
在直線y=x-1中,令y=0,解得:x=1,則C的坐標(biāo)是(1,0);
則CF=OF-OC=2-1=1,AF=1,在直角△ACF中,AC==,
OC=OD=1,則CD==,
BH=BG-GH=2-1=1,DH=1,在直角△BDH中,BD==,
則AC=CD=DB=,
故PC=AC-AP=,
在直線y=x-1中,令x=0,則y=-1,則D的坐標(biāo)是(0,-1),OD=1,
令y=0,則x=1,則C的坐標(biāo)是:(1,0),則OC=1,
則△OCD是等腰直角三角形.
∴∠OCD=45°,
∴∠ACE=∠OCD=45°.
再由∠ACE=45°得CE=PE=
從而OE=OC+CE=,
點(diǎn)P的坐標(biāo)為P(
點(diǎn)評(píng):判斷存在性問題是中考中常見的題型,需要熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
m
x
圖象與一次函數(shù)y=kx+b的圖象均經(jīng)過A(-1,4)和B(a,
4
5
)兩點(diǎn),
(1)求B點(diǎn)的坐標(biāo)及兩個(gè)函數(shù)的解析式;
(2)若一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)C,求C點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
kx
(k>0)的圖象經(jīng)過點(diǎn)A(2,m),過點(diǎn)A作AB⊥x軸于點(diǎn)B,且S△AOB=3.若一次函數(shù)y=ax+1的圖象經(jīng)過點(diǎn)A,并且與x軸相交于點(diǎn)C,求AO:AC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
kx
的圖象與一次函數(shù)y=ax+b的圖象交于M(2,m)和N(-1,-4)兩點(diǎn).
(1)求這兩個(gè)函數(shù)的解析式;
(2)求△MON的面積;
(3)請(qǐng)判斷點(diǎn)P(4,1)是否在這個(gè)反比例函數(shù)的圖象上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知反比例函數(shù)y1=
kx
和一次函數(shù)y2=ax+b的圖象相交于點(diǎn)A和點(diǎn)D,且點(diǎn)A的橫坐標(biāo)為1,點(diǎn)D的縱坐標(biāo)為-1.過點(diǎn)A作AB⊥x軸于點(diǎn)B,△AOB的面積為1.
(1)求反比例函數(shù)和一次函數(shù)的解析式.
(2)若一次函數(shù)y2=ax+b的圖象與x軸相交于點(diǎn)C,求∠ACO的度數(shù).
(3)結(jié)合圖象直接寫出:當(dāng)y1>y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知反比例函數(shù)y=
k
x
的圖象經(jīng)過第二象限內(nèi)的點(diǎn)A(-1,m),AB⊥x軸于點(diǎn)B,△AOB的面積為2.若直線y=ax+b經(jīng)過點(diǎn)A,并且經(jīng)過反比例函數(shù)y=
k
x
的圖象上另一點(diǎn)C(n,一2).
(1)求直線y=ax+b的解析式;
(2)設(shè)直線y=ax+b與x軸交于點(diǎn)M,求AM的長;
(3)在雙曲線上是否存在點(diǎn)P,使得△MBP的面積為8?若存在請(qǐng)求P點(diǎn)坐標(biāo);若不存在請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案