【題目】解方程和不等式組:
(1) + =1
(2) .
【答案】
(1)解:原方程可化為x﹣5=2x﹣5,解得x=0,
把x=0代入2x﹣5得,2x﹣5=﹣5≠0,
故x=0是原分式方程的解
(2)解: ,由①得,x≤2,由②得,x>﹣1,
故不等式組的解為:﹣1<x≤2
【解析】(1)先把分式方程化為整式方程求出x的值,再代入最簡(jiǎn)公分母進(jìn)行檢驗(yàn)即可;(2)分別求出各不等式的解集,再求出其公共解集即可.
【考點(diǎn)精析】本題主要考查了去分母法和一元一次不等式組的解法的相關(guān)知識(shí)點(diǎn),需要掌握先約后乘公分母,整式方程轉(zhuǎn)化出.特殊情況可換元,去掉分母是出路.求得解后要驗(yàn)根,原留增舍別含糊;解法:①分別求出這個(gè)不等式組中各個(gè)不等式的解集;②利用數(shù)軸表示出各個(gè)不等式的解集;③找出公共部分;④用不等式表示出這個(gè)不等式組的解集.如果這些不等式的解集的沒(méi)有公共部分,則這個(gè)不等式組無(wú)解 ( 此時(shí)也稱這個(gè)不等式組的解集為空集 )才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校初三(1)班 名學(xué)生需要參加體育“五選一”自選項(xiàng)目測(cè)試,班上學(xué)生所報(bào)自選項(xiàng)目的情況統(tǒng)計(jì)表如下:
自選項(xiàng)目 | 人數(shù) | 頻率 |
立定跳遠(yuǎn) | 9 | 0.18 |
三級(jí)蛙跳 | 12 | |
一分鐘跳繩 | 8 | 0.16 |
投擲實(shí)心球 | 0.32 | |
推鉛球 | 5 | 0.1 |
合計(jì) | 50 | 1 |
(1)求 的值;
(2)若將各自選項(xiàng)目的人數(shù)所占比例繪制成扇形統(tǒng)計(jì)圖,求“一分鐘跳繩”對(duì)應(yīng)扇形的圓心角的度數(shù);
(3)在選報(bào)“推鉛球”的學(xué)生中,有3名男生,2名女生.為了了解學(xué)生的訓(xùn)練效果,從這5名學(xué)生中隨機(jī)抽取兩名學(xué)生進(jìn)行推鉛球測(cè)試,求所抽取的兩名學(xué)生中至多有一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2﹣2ax+c(a>0)的圖象與x軸的負(fù)半軸和正半軸分別交于A、B兩點(diǎn),與y軸交于點(diǎn)C,它的頂點(diǎn)為P,直線CP與過(guò)點(diǎn)B且垂直于x軸的直線交于點(diǎn)D,且CP:PD=2:3
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)若tan∠PDB= ,求這個(gè)二次函數(shù)的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系xOy中,已知A(﹣1,0)、B(3,0)、C(0,﹣1)三點(diǎn),D(1,m)是一個(gè)動(dòng)點(diǎn),當(dāng)△ACD的周長(zhǎng)最小時(shí),△ABD的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,點(diǎn)C(3,0),函數(shù)y= (k>0,x>0)的圖象經(jīng)過(guò)OABC的頂點(diǎn)A(m,n)和邊BC的中點(diǎn)D.
(1)求m的值;
(2)若△OAD的面積等于6,求k的值;
(3)若P為函數(shù)y═ (k>0,x>0)的圖象上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作直線l⊥x軸于點(diǎn)M,直線l與x軸上方的OABC的一邊交于點(diǎn)N,設(shè)點(diǎn)P的橫坐標(biāo)為t,當(dāng) 時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣ x+1的圖象與x軸、y軸分別交于點(diǎn)A、B,把Rt△AOB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)角α(30°<α<180°),得到△AO′B′.
(1)當(dāng)α=60°時(shí),判斷點(diǎn)B是否在直線O′B′上,并說(shuō)明理由;
(2)連接OO′,設(shè)OO′與AB交于點(diǎn)D,當(dāng)α為何值時(shí),四邊形ADO′B′是平行四邊形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC中,∠ABC=90°,先把△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°至△DBE后,再把△ABC沿射線平移至△FEG,DE、FG相交于點(diǎn)H.
(1)判斷線段DE、FG的位置關(guān)系,并說(shuō)明理由;
(2)連結(jié)CG,求證:四邊形CBEG是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,CD是⊙O的切線,切點(diǎn)為D,CD與AB的延長(zhǎng)線交于點(diǎn)C,∠A=30°,給出下面3個(gè)結(jié)論:①AD=CD;②BD=BC;③AB=2BC,其中正確結(jié)論的個(gè)數(shù)是( )
A.3
B.2
C.1
D.0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com