已知:x=1是一元二次方程的一個(gè)解,且,求的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:活學(xué)巧練九年級(jí)數(shù)學(xué)上 題型:044
已知關(guān)于x的方程(m+1)+(m-3)x-1=0是一元二次方程,求m的值,并指出此時(shí)的一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知一元二次方程x2+ax+a-2=0.
(1)求證:不論a為何實(shí)數(shù),此方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)a<0,當(dāng)二次函數(shù)y=x2+ax+a-2的圖象與x軸的兩個(gè)交點(diǎn)的距離為時(shí),求出此二次函數(shù)的解析式;
(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點(diǎn),在函數(shù)圖象上是否存在點(diǎn)P,使得△PAB的面積為,若存在求出P點(diǎn)坐標(biāo),若不存在請(qǐng)說(shuō)明理由.
【解析】(1)判斷上述方程的根的情況,只要看根的判別式△=b2-4ac的值的符號(hào)就可以了,(2)根據(jù)二次函數(shù)圖象與x軸的兩個(gè)交點(diǎn)的距離公式解答即可.(3)是二次函數(shù)綜合應(yīng)用問(wèn)題和三角形的綜合應(yīng)用
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A.y1<y2<y3 | B.y2<y1<y3 | C.y3<y1<y2 | D.y1<y3<y2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(江蘇蘇州卷)數(shù)學(xué)(解析版) 題型:選擇題
已知二次函數(shù)(m為常數(shù))的圖象與x軸的一個(gè)交點(diǎn)為(1,0),則關(guān)于x的一元二次方程的兩實(shí)數(shù)根是
A.x1=1,x2=-1 B.x1=1,x2=2
C.x1=1,x2=0 D.x1=1,x2=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2012屆北京市西城區(qū)九年級(jí)一模數(shù)學(xué)卷(解析版) 題型:解答題
已知一元二次方程x2+ax+a-2=0.
(1)求證:不論a為何實(shí)數(shù),此方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)a<0,當(dāng)二次函數(shù)y=x2+ax+a-2的圖象與x軸的兩個(gè)交點(diǎn)的距離為時(shí),求出此二次函數(shù)的解析式;
(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點(diǎn),在函數(shù)圖象上是否存在點(diǎn)P,使得△PAB的面積為,若存在求出P點(diǎn)坐標(biāo),若不存在請(qǐng)說(shuō)明理由.
【解析】(1)判斷上述方程的根的情況,只要看根的判別式△=b2-4ac的值的符號(hào)就可以了,(2)根據(jù)二次函數(shù)圖象與x軸的兩個(gè)交點(diǎn)的距離公式解答即可.(3)是二次函數(shù)綜合應(yīng)用問(wèn)題和三角形的綜合應(yīng)用
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com