如圖,在△ABC中,AB=AC=1,∠A=45°,邊長為1的正方形的一個(gè)頂點(diǎn)D在邊AC上,與△ABC另兩邊分別交于點(diǎn)E、F,DEAB,將正方形平移,使點(diǎn)D保持在AC上(D不與A重合),設(shè)AF=x,正方形與△ABC重疊部分的面積為y.
(1)求y與x的函數(shù)關(guān)系式并寫出自變量x的取值范圍;
(2)x為何值時(shí)y的值最大?
(3)x在哪個(gè)范圍取值時(shí)y的值隨x的增大而減?
(1)∵AB=AC,
∴∠B=∠C,
∵DEAB,
∴∠B=∠CED,∠AFD=∠FDE=90°,
∴∠C=∠CED,
∴DC=DE.(2分)
在Rt△ADF中,∵∠A=45°,
∴∠ADF=45°=∠A,
∴AF=DF=x,
AD=
x
cos45°
=
2
x
,(3分)
DC=DE=1-
2
x
,(4分)
∴y=
1
2
(DE+FB)×DF=
1
2
(1-
2
x+1-x)x=-
1
2
2
+1)x2+x.
∵點(diǎn)D保持在AC上,且D不與A重合,
∴0<AD≤1,
∴0<
2
x≤1,
∴0<x≤
2
2

故y=-
1
2
2
+1)x2+x,自變量x的取值范圍是0<x≤
2
2
;(8分)

(2)∵y=-
1
2
2
+1)x2+x,
∴當(dāng)x=-
1
2×(-
1
2
)(
2
+1)
=
2
-1
2
2
時(shí),y有最大值;(10分)

(3)∵y=-
1
2
2
+1)x2+x,0<x≤
2
2
,-
1
2
<0,
∴當(dāng)
2
-1≤x≤
2
2
時(shí),y隨x的增大而減。14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有一座拋物線型拱橋(如圖),正常水位時(shí)橋下河面寬20m,河面距拱頂4m.
(1)在如圖所示的平面直角坐標(biāo)系中,求出拋物線解析式;
(2)為了保證過往船只順利航行,橋下水面的寬度不得小于18m.求水面在正常水位基礎(chǔ)上漲多少m時(shí),就會(huì)影響過往船只?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖是一座拋物線型拱橋,以橋基AB為x軸,AB的中垂線為y軸建立直角坐標(biāo)系.已知橋基AB的跨度為60米,如果水位從AB處上升5米,就達(dá)到警戒線CD處,此時(shí)水面CD的寬為30
2
米,求拋物線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,拋物線y=
2
m
x2-2x
與x軸負(fù)半軸交于點(diǎn)A,頂點(diǎn)為B,且對(duì)稱軸與x軸交于點(diǎn)C.
(1)求點(diǎn)B的坐標(biāo)(用含m的代數(shù)式表示);
(2)D為BO中點(diǎn),直線AD交y軸于E,若點(diǎn)E的坐標(biāo)為(0,2),求拋物線的解析式;
(3)在(2)的條件下,點(diǎn)M在直線BO上,且使得△AMC的周長最小,P在拋物線上,Q在直線BC上,若以A、M、P、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=mx2+(m-3)x-3(m>0)的圖象如圖所示.
(1)這條拋物線與x軸交于兩點(diǎn)A(x1,0)、B(x2,0)(x1<x2),與y軸交于點(diǎn)C,且AB=4,⊙M過A、B、C三點(diǎn),求扇形MAC的面積;
(2)在(1)的條件下,拋物線上是否存在點(diǎn)P,使△PBD(PD垂直于x軸,垂足為D)被直線BC分成面積比為1:2的兩部分?若存在,請(qǐng)求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),二次函數(shù)y=-x2+bx+3的圖象經(jīng)過點(diǎn)A(-1,0),頂點(diǎn)為P.
(1)求這個(gè)二次函數(shù)的解析式;
(2)頂點(diǎn)P的坐標(biāo)為______;此拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo)為______;
(3)若拋物線與y軸交于C點(diǎn),求△ABC的面積;
(4)在x軸上方的拋物線上是否存在一點(diǎn)D,使△ABD的面積等于△ABC的面積?若存在,請(qǐng)直接寫出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,y軸是邊長為2的等邊△BAD的對(duì)稱軸,x軸是等腰△BDC的對(duì)稱軸.
(1)試求出經(jīng)過點(diǎn)A、點(diǎn)B,且對(duì)稱軸為直線x=1的拋物線的解析式;
(2)把△BDC沿著直線BD翻折后,得到△BDC'.
①問點(diǎn)C'是否在(1)中的拋物線上?
②設(shè)BC'交直線x=1于點(diǎn)Q.若點(diǎn)P是(1)中的拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PT⊥直線x=1,垂足為T,問:在拋物線上是否存在著點(diǎn)P,使得以P、T、Q為頂點(diǎn)的三角形與△QDC'相似?若存在,寫出所有符合上述條件的點(diǎn)P的橫坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,用12米長的木方,做一個(gè)有一條橫檔的矩形窗子,為使透進(jìn)的光線最多,選擇窗子的長、寬各為______、______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商場(chǎng)經(jīng)營一批進(jìn)價(jià)為2元一件的小商品,在市場(chǎng)營銷中發(fā)現(xiàn)此商品的日銷售單價(jià)x元與日銷售量y件之間有如下關(guān)系:
x35911
y181462
(1)在直角坐標(biāo)系中
①根據(jù)表中提供的數(shù)據(jù)描出實(shí)數(shù)對(duì)(x,y)的對(duì)應(yīng)點(diǎn);
②猜測(cè)并確定日銷售量y件與日銷售單價(jià)x元之間的函數(shù)關(guān)系式,并畫出圖象.并說明當(dāng)x≥12時(shí)對(duì)應(yīng)圖象的實(shí)際意義.
(2)設(shè)經(jīng)營此商品的日銷售利潤(不考慮其他因素)為P元,根據(jù)日銷售規(guī)律:
①試求日銷售利潤P元與日銷售單價(jià)x元之間的函數(shù)關(guān)系式;
②當(dāng)日銷售單價(jià)x為多少元時(shí),才能獲得最大日銷售利潤?試問日銷售利潤P是否存在最小值?若有,試求出,并說明其實(shí)際意義;若無,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案