1.如圖,在等邊△ABC內(nèi)有一點D,AD=5,BD=6,CD=4,將△ABD繞A點逆時針旋轉(zhuǎn),使AB與AC重合,點D旋轉(zhuǎn)至點E,求∠CDE的余弦值.

分析 先根據(jù)等邊三角形的性質(zhì)得AB=AC,∠BAC=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得AD=AE=5,∠DAE=∠BNAC=60°,CE=BD=6,于是可判斷△ADE為等邊三角形,得到DE=AD=5;過E點作EH⊥CD于H,如圖,設(shè)DH=x,則CH=4-x,利用勾股定理得到52-x2=62-(4-x)2,解得x=$\frac{5}{8}$,然后根據(jù)余弦的定義求解.

解答 解:∵△ABC為等邊三角形,
∴AB=AC,∠BAC=60°,
∵△ABD繞A點逆時針旋轉(zhuǎn)得△ACE,
∴AD=AE=5,∠DAE=∠BNAC=60°,CE=BD=6,
∴△ADE為等邊三角形,
∴DE=AD=5,
過E點作EH⊥CD于H,如圖,設(shè)DH=x,則CH=4-x,
在Rt△DHE中,EH2=52-x2,
在Rt△CHE中,EH2=62-(4-x)2,
∴52-x2=62-(4-x)2,解得x=$\frac{5}{8}$,
∴DH=$\frac{5}{8}$,
在Rt△EDH中,cos∠HDE=$\frac{DH}{DE}$=$\frac{\frac{5}{8}}{5}$=$\frac{1}{8}$,
即∠CDE的余弦值為$\frac{1}{8}$.

點評 本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了等邊三角形的性質(zhì)和解直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

1.凸四邊形ABCD中,AB=3,BC=4,CD=7,則AD邊的取值范圍為( 。
A.2<AD<7B.2<AD<13C.0<AD<14D.1<AD<13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.已知一次函數(shù)y=3x-2和y=x+4的圖象分別為直線l1和l2,點A(m,n)在直線l1上,點B(m,h)在直線l2上,試比較n和h的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.已知拋物線y=-$\frac{1}{2}{x^2}$+bx+4上有不同的兩點E(6,-k2+1)和F(-4,-k2+1).
(1)求此拋物線的解析式.
(2)如圖,拋物線y=-$\frac{1}{2}{x^2}$+bx+4與x軸的正半軸和y軸分別交于點A和點B,M為AB的中點,∠PMQ=45°,MP交y 軸于點C,MQ交x軸于點D.∠PMQ在AB的左側(cè)以M為中心旋轉(zhuǎn),設(shè)AD的長為m(m>0),BC的長為n,求n和m之間的函數(shù)關(guān)系式.
(3)在(2)的條件下,當(dāng)m、n為何值時,∠PMQ的邊過點F.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.一次函數(shù),y=kx+b(k、b是常數(shù),k≠0)的圖象如圖所示,則不等式kx+b<0的解集是(  )
A.x>-2B.x>0C.x<-2D.x<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.如圖,一架25米長的梯子AB,斜靠在一豎直的墻AC上,這時梯足B到墻底端C的距離為7米.
(1)這個梯子的頂端距地面有多高?
(2)如果梯子的頂端沿墻垂直下滑4米至E,那么梯子的底部在水平方向也滑動了4米嗎?
(3)如果梯子與地面的夾角小于30°時,梯子就會滑倒,那么在第(2)問中,梯子會滑倒嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA在x軸上,頂點B(4,2)在拋物線y=ax2+bx上,且拋物線交x軸于另一點D(6,0).
(1)則a=-$\frac{1}{4}$,b=$\frac{3}{2}$;
(2)已知E為BC邊上一個動點(不與B、C重合),連結(jié)AE交OB于點P,過點E作y軸的平行線分別交拋物線、直線OB于F、G.
①求線段FG的最大值,此時△PFG的面積為$\frac{1}{3}$;
②若以點O為圓心,OP為半徑作⊙O,試判斷直線AE與⊙O的能否相切?若能請求出E點坐標(biāo),若不能請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

10.花盆擺放的圖案如圖所示:“○”表示紅色郁金香,“□”表示黃色郁金香,請你仔細(xì)觀察花盆擺放的規(guī)律,可得出前n行共有$\frac{1}{2}$n(n+1)盆紅色郁金香和n(n+1)黃色郁金香.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.如圖,拋物線y=ax2+2x-6與x軸交于點A(-6,0),B(點A在點B的左側(cè)),與y軸交于點C,直線BD與拋物線交于點D,點D與點C關(guān)于該拋物線的對稱軸對稱.
(1)連接CD,求拋物線的表達式和線段CD的長度;
(2)在線段BD下方的拋物線上有一點P,過點P作PM∥x軸,PN∥y軸,分別交BD于點M,N.當(dāng)△MPN的面積最大時,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案