附加題:已知等腰三角形腰長為10,一腰上的高為6,則以底邊為邊長的正方形面積為________.
40或360
分析:解答此題需分兩種情況:①當?shù)妊切蔚捻斀菫殇J角時,這時腰上的高在三角形的內(nèi)部;②當?shù)妊切蔚捻斀菫殁g角時,這時腰上的高在等腰三角形的腰的延長線上;進一步利用勾股定理解答即可.
解答:①當?shù)妊切蔚捻斀菫殇J角時,如圖,
在Rt△ABD中,
AD=
=
=8,
CD=AC-AD=10-8=2,
在Rt△BDC中,
BC
2=BD
2+CD
2=6
2+2
2=40;
②當?shù)妊切蔚捻斀菫殁g角時,如圖,
在Rt△ABD中,
AD=
=
=8,
CD=AC+AD=10+8=18,
在Rt△BDC中,
BC
2=BD
2+CD
2=6
2+18
2=360;
綜上所知,以底邊為邊長的正方形面積為40,360.
故填40,360.
點評:此題解答時注意分兩種情況討論,作出圖形,結(jié)合圖形,利用勾股定理,問題自然解決.