【題目】我們將能完全覆蓋某平面圖形的最小圓稱為該平面圖形的最小覆蓋圓.例如線段 的最小覆蓋圓就是以線段 為直徑的圓.
(1)請(qǐng)分別作出圖①中兩個(gè)三角形的最小覆蓋圓(要求用尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)三角形的最小覆蓋圓有何規(guī)律?請(qǐng)直接寫出你所得到的結(jié)論(不要求證明);
(3)某城市有四個(gè)小區(qū) (其位置如圖②所示),現(xiàn)擬建一個(gè)手機(jī)信號(hào)基站,為了使這四個(gè)小區(qū)居民的手機(jī)都能有信號(hào),且使基站所需發(fā)射功率最。ň嚯x越小,所需功率越。,此基站應(yīng)建在何處?請(qǐng)寫出你的結(jié)論并說(shuō)明研究思路.

【答案】
(1)解:如圖所示:


(2)解:銳角三角形的最小覆蓋圓是其外接圓,鈍角三角形的最小覆蓋圓是以其最長(zhǎng)邊為直徑的圓,直角三角形的最小覆蓋圓二者均可
(3)解:結(jié)論: 的外接圓的圓心為手機(jī)信號(hào)基站所在位置.

研究思路:

a.手機(jī)信號(hào)基站應(yīng)建在四邊形 的最小覆蓋圓的圓心處;所以先考慮四邊形 的外接圓,因?yàn)閷?duì)角不互補(bǔ),所以該四邊形沒(méi)有外接圓;

b.作四邊形對(duì)角線,將四邊形分割成兩個(gè)三角形,考慮其中一個(gè)三角形的最小覆蓋圓能否覆蓋另一個(gè)三角形,從而將四邊形最小覆蓋圓問(wèn)題轉(zhuǎn)化為三角形最小覆蓋圓問(wèn)題來(lái)研究;

c.若沿 分割,因?yàn)? ,所以這兩個(gè)三角形的最小覆蓋圓均不能完全覆蓋另一個(gè)三角形;

d.若沿 分割,因?yàn)? ,所以存在一個(gè)三角形的最小覆蓋圓能完全覆蓋另一個(gè)三角形的情況,又因?yàn)? ,所以 的最小覆蓋圓,即其外接圓能完全覆蓋 ,因此 的外接圓的圓心為手機(jī)信號(hào)基站所在位置.


【解析】(1)按新定義規(guī)則作圖;(2)新定義圖形要結(jié)合學(xué)習(xí)過(guò)的知識(shí),鈍角三角形的最小覆蓋圓就比其外接圓小;(3)要借鑒(2)的規(guī)律,先判斷這個(gè)四邊形不是圓內(nèi)接四邊形,Δ H E F 的最小覆蓋圓,即其外接圓能完全覆蓋 Δ H G F,Δ H E F 的外接圓的圓心為手機(jī)信號(hào)基站所在位置.
【考點(diǎn)精析】本題主要考查了三角形的外接圓與外心的相關(guān)知識(shí)點(diǎn),需要掌握過(guò)三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC中,點(diǎn)D,E是邊BC上的兩點(diǎn),且AB=BE,AC=CD.

(1)若∠BAC =90°,求∠DAE的度數(shù);

(2)若∠BAC=120°,直接寫出∠DAE的度數(shù)

(3)設(shè)∠BAC=α,∠DAE=β,猜想α與β的之間數(shù)量關(guān)系(不需證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=mx2-8mx+16m-1(m>0)與x軸的交點(diǎn)分別為A(x1 , 0),B(x2 , 0).
(1)求證:拋物線總與x軸有兩個(gè)不同的交點(diǎn);
(2)若AB=2,求此拋物線的解析式.
(3)已知x軸上兩點(diǎn)C(2,0),D(5,0),若拋物線y=mx2-8mx+16m-1(m>0)與線段CD有交點(diǎn),請(qǐng)寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,填空并填寫理由:

(1)因?yàn)?/span>∠1=∠2,所以ADBC__________

(2)因?yàn)?/span>A+∠ABC=180°,所以ADBC________

(3)因?yàn)?/span>_____________,所以C+∠ABC=180°(兩直線平行,同旁內(nèi)角互補(bǔ))

(4)因?yàn)?/span>____________,所以∠3=∠C(兩直線平行,同位角相等)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,按以下步驟作圖:

①以B為圓心,任意長(zhǎng)為半徑作弧,交AB于D,交BC于E;

②分別以D,E為圓心,以大于DE的同樣長(zhǎng)為半徑作弧,兩弧交于點(diǎn)F

③作射線BFACG.

如果BG=CG,∠A=60°,那么∠ACB的度數(shù)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是本地區(qū)一種產(chǎn)品30天的銷售圖象,圖1是產(chǎn)品日銷售量y(單位:件)與時(shí)間t(單位:天)的函數(shù)關(guān)系,圖2是一件產(chǎn)品的銷售利潤(rùn)z(單位:元)與時(shí)間t(單位:天)的函數(shù)關(guān)系,已知日銷售利潤(rùn)=日銷售量×一件產(chǎn)品的銷售利潤(rùn),下列結(jié)論錯(cuò)誤的是( )

A. 24天的銷售量為200 B. 10天銷售一件產(chǎn)品的利潤(rùn)是15

C. 12天與第30天這兩天的日銷售利潤(rùn)相等 D. 30天的日銷售利潤(rùn)是750

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)綠色出行號(hào)召,越來(lái)越多市民選擇租用共享單車出行已知某共享單車公司為市民提供了手機(jī)支付和會(huì)員卡支付兩種支付方式,如圖描述了兩種方式應(yīng)支付金額y()與騎行時(shí)間x(時(shí))之間的函數(shù)關(guān)系,根據(jù)圖象回答下列問(wèn)題:

(1)求手機(jī)支付金額y()與騎行時(shí)間x(時(shí))的函數(shù)關(guān)系式;

(2)李老師經(jīng)常騎行共享單車,請(qǐng)根據(jù)不同的騎行時(shí)間幫他確定選擇哪種支付方式比較合算

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出三個(gè)多項(xiàng)式:x2+x-1,x2+3x+1,x2+x,請(qǐng)你選擇其中兩個(gè)進(jìn)行加法運(yùn)算,并把結(jié)果因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=BC=4,AO=BO,P是射線CO上的一個(gè)動(dòng)點(diǎn),∠AOC=60°,則當(dāng)△PAB為直角三角形時(shí),AP的長(zhǎng)為

查看答案和解析>>

同步練習(xí)冊(cè)答案