【題目】如圖甲,在△ABC中,∠ACB為銳角.點(diǎn)D為射線(xiàn)BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.
解答下列問(wèn)題:
(1)如果AB=AC,∠BAC=90.
①當(dāng)點(diǎn)D在線(xiàn)段BC上時(shí)(與點(diǎn)B不重合),如圖乙,線(xiàn)段CF、BD之間的位置關(guān)系為 ,數(shù)量關(guān)系為 .
②當(dāng)點(diǎn)D在線(xiàn)段BC的延長(zhǎng)線(xiàn)上時(shí),如圖丙,①中的結(jié)論是否仍然成立,為什么?
(2)如果AB≠AC,∠BAC≠90,點(diǎn)D在線(xiàn)段BC上運(yùn)動(dòng).
試探究:當(dāng)△ABC滿(mǎn)足一個(gè)什么條件時(shí),CF⊥BC(點(diǎn)C、F重合除外)?畫(huà)出相應(yīng)圖形,并說(shuō)明理由.(畫(huà)圖不寫(xiě)作法)
(3)若AC=,BC=3,在(2)的條件下,設(shè)正方形ADEF的邊DE與線(xiàn)段CF相交于點(diǎn)P,求線(xiàn)段CP長(zhǎng)的最大值.
【答案】(1)①CF與BD位置關(guān)系是垂 直、數(shù)量關(guān)系是相 等;
②當(dāng)點(diǎn)D在BC的延長(zhǎng)線(xiàn)上時(shí)①的結(jié)論仍成立.
由正方形ADEF得 AD="AF" ,∠DAF=90.
∵∠BAC=90,∴∠DAF="∠BAC" , ∴∠DAB=∠FAC,
又AB="AC" ,∴△DAB≌△FAC , ∴CF=BD
∠ACF=∠ABD.
∵∠BAC=90, AB="AC" ,∴∠ABC=45,∴∠ACF=45,
∴∠BCF="∠ACB+∠ACF=" 90.即 CF⊥BD
(2)畫(huà)圖正確
當(dāng)∠BCA=45時(shí),CF⊥BD(如圖丁).
理由是:過(guò)點(diǎn)A作AG⊥AC交BC于點(diǎn)G,∴AC=AG
可證:△GAD≌△CAF ∴∠ACF=∠AGD=45
∠BCF="∠ACB+∠ACF=" 90. 即CF⊥BD
(3)當(dāng)具備∠BCA=45時(shí),
過(guò)點(diǎn)A作AQ⊥BC交BC的延長(zhǎng)線(xiàn)于點(diǎn)Q,(如圖戊)
∵DE與CF交于點(diǎn)P時(shí), ∴此時(shí)點(diǎn)D位于線(xiàn)段CQ上,
∵∠BCA=45,可求出AQ= CQ=4.設(shè)CD="x" ,∴ DQ=4—x,
容易說(shuō)明△AQD∽△DCP,∴, ∴,
.
∵0<x≤3 ∴當(dāng)x=2時(shí),CP有最大值1.
【解析】
(1)首先選擇圖2證明,由AB=AC,∠BAC=90°,可得:△ABC是等腰直角三角形,又由四邊形ADEF是正方形,易證得△ABD≌△ACF(SAS),即可求得:CF=BD,∠ACF=∠B=45°,證得CF⊥BD;
(2)過(guò)點(diǎn)A作AG⊥AC交BC于點(diǎn)G,可證△GAD≌△CAF,則∠ACF=∠AGD=45,從而得∠BCF="∠ACB+∠ACF=" 90, 即CF⊥BD。
(3)首先作輔助線(xiàn):過(guò)點(diǎn)A作AG⊥BC,垂足為G,連接CF,易得:△AGD∽△DCP,由相似三角形的對(duì)應(yīng)邊成比例,即可求得:AGCP=GDDC,在等腰Rt△AGC中求得AC的值,設(shè)GD=x,即可求得CP關(guān)于x的二次函數(shù),求得最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△OAC的頂點(diǎn)O在坐標(biāo)原點(diǎn),OA邊在x軸上,OA=2,AC=1,把△OAC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)到△O′AC′,使得點(diǎn)O′的坐標(biāo)是(1,),則在旋轉(zhuǎn)過(guò)程中線(xiàn)段OC掃過(guò)部分(陰影部分)的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系中,點(diǎn)在軸上,點(diǎn)、在軸上,,,,點(diǎn)的坐標(biāo)是,
(1)求三個(gè)頂點(diǎn)、、的坐標(biāo);
(2)連接、,并用含字母的式子表示的面積();
(3)在(2)問(wèn)的條件下,是否存在點(diǎn),使的面積等于的面積?如果存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,垂直平分,分別交、于點(diǎn)、,垂直平分,分別交,于點(diǎn)、.
(1)請(qǐng)判斷△ANE的周長(zhǎng)與AB+AC的和的大小,并說(shuō)明理由.
(2)①如圖①,若∠B=34°,∠C=28°,求的度數(shù)為______;
②如圖②,若,則的度數(shù)為________;
③若,則的度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在以AB為直徑的半圓中,將弧BC沿弦BC折疊交AB于點(diǎn)D,若AD=5,DB=7.
(1)求BC的長(zhǎng);
(2)求圓心到BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,,結(jié)論:①;②;③;④,其中正確的是有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程(組)或不等式(組)解應(yīng)用題:
(1)甲工人接到240個(gè)零件的任務(wù),工作1小時(shí)后,因要提前完成任務(wù),調(diào)來(lái)乙和甲合作,合做了5小時(shí)完成.已知甲每小時(shí)比乙少做4個(gè),那么甲、乙每小時(shí)各做多少個(gè)?
(2)某工廠準(zhǔn)備購(gòu)進(jìn)、兩種機(jī)器共20臺(tái)用于生產(chǎn)零件,經(jīng)調(diào)查2臺(tái)型機(jī)器和1臺(tái)型機(jī)器價(jià)格為18萬(wàn)元,1臺(tái)型機(jī)器和2臺(tái)型機(jī)器價(jià)格為21萬(wàn)元.
①求一臺(tái)型機(jī)器和一臺(tái)型機(jī)器價(jià)格分別是多少萬(wàn)元?
②已知1臺(tái)型機(jī)器每月可加工零件400個(gè),1臺(tái)型機(jī)器每月可加工零件800個(gè),經(jīng)預(yù)算購(gòu)買(mǎi)兩種機(jī)器的價(jià)格不超過(guò)140萬(wàn)元,每月兩種機(jī)器加工零件總數(shù)不低于12400個(gè),那么有哪幾種購(gòu)買(mǎi)方案,哪種方案最省錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB⊥BC且AB=BC,DE⊥CD且DE=CD,請(qǐng)按照?qǐng)D中所標(biāo)注的數(shù)據(jù),計(jì)算圖中實(shí)線(xiàn)所圍成的圖形的面積S是( )
A. 36B. 48C. 72D. 108
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,對(duì)稱(chēng)軸為直線(xiàn)x=1的拋物線(xiàn)y=x2﹣bx+c與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點(diǎn),與y軸交于C點(diǎn),且+=﹣.
(1)求拋物線(xiàn)的解析式;
(2)拋物線(xiàn)頂點(diǎn)為D,直線(xiàn)BD交y軸于E點(diǎn);
①設(shè)點(diǎn)P為線(xiàn)段BD上一點(diǎn)(點(diǎn)P不與B、D兩點(diǎn)重合),過(guò)點(diǎn)P作x軸的垂線(xiàn)與拋物線(xiàn)交于點(diǎn)F,求△BDF面積的最大值;
②在線(xiàn)段BD上是否存在點(diǎn)Q,使得∠BDC=∠QCE?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com