【題目】已知在平面直角坐標系內(nèi),拋物線y=x2﹣bx+6經(jīng)過x軸上兩點A,B,點B的坐標為(3,0),與y軸相交于點C.
(1)求拋物線的解析式;
(2)求△ABC的面積.
科目:初中數(shù)學 來源: 題型:
【題目】對于平面直角坐標系xOy中的點P和⊙C,給出如下定義:若⊙C上存在一個點M,使得PM = MC,則稱點P為⊙C的“等徑點”.已知點D,E,F.
(1)當⊙O的半徑為1時,
①在點D,E,F中,⊙O的“等徑點”是 ;
②作直線EF,若直線EF上的點T(m,n)是⊙O的“等徑點”,求m的取值范圍.
(2)過點E作EG⊥EF交x軸于點G,若△EFG上的所有點都是某個圓的“等徑點”,求這個圓的半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與軸,軸分別交于點,經(jīng)過點的拋物線與軸的另一個交點為點,點是拋物線上一點,過點作軸于點,連接,設點的橫坐標為.
求拋物線的解析式;
當點在第三象限,設的面積為,求與的函數(shù)關(guān)系式,并求出的最大值及此時點的坐標;
連接,若,請直接寫出此時點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調(diào)整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上,已知紙板的兩條直角邊DE=0.4m,EF=0.2m,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹高。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某駐村扶貧小組實施產(chǎn)業(yè)扶貧,幫助貧困農(nóng)戶進行西瓜種植和銷售.已知西瓜的成本為6元/千克,規(guī)定銷售單價不低于成本,又不高于成本的兩倍.經(jīng)過市場調(diào)查發(fā)現(xiàn),某天西瓜的銷售量y(千克)與銷售單價x(元/千克)的函數(shù)關(guān)系如下圖所示:
(1)求y與x的函數(shù)解析式(也稱關(guān)系式);
(2)求這一天銷售西瓜獲得的利潤的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線與y軸的交點為A,與x軸的正半軸分別交于點B(b,0),C(c,0).
(1)當b=1時,求拋物線相應的函數(shù)表達式;
(2)當b=1時,如圖,E(t,0)是線段BC上的一動點,過點E作平行于y軸的直線l與拋物線的交點為P.求△APC面積的最大值;
(3)當c =b+ n.時,且n為正整數(shù).線段BC(包括端點)上有且只有五個點的橫坐標是整數(shù),求b的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BC=9,∠ABC的平分線BF交AC于點F,點D、點E分別是邊AB、AC上的點,若,則BD﹣DE的值為( )
A.3B.3.5C.4D.4.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),二次函數(shù)y=ax2﹣bx(a≠0)的圖象與x軸、直線y=x的交點分別為點A(4,0)、B(5,5).
(1)a= ,b= ,∠AOB= °;
(2)連接AB,點P是拋物線上一點(異于點A),且∠PBO=∠OBA,求點P的坐標 ;
(3)如圖(2),點C、D是線段OB上的動點,且CD=2.設點C的橫坐標為m.
①過點C、D分別作x軸的垂線,與拋物線相交于點F、E,連接EF.當CF+DE取得最大值時,求m的值并判斷四邊形CDEF的形狀;
②連接AC、AD,求m為何值時,AC+AD取得最小值,并求出這個最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店經(jīng)營家居收納盒,已知成批購進時的單價是20元.調(diào)查發(fā)現(xiàn):銷售單價是30元時,月銷售量是230件,而銷售單價每上漲1元,月銷售量就減少10件,但每個收納盒售價不能高于40元.設每個收納盒的銷售單價上漲了元時(為正整數(shù)),月銷售利潤為元.
(1)求與的函數(shù)關(guān)系式.
(2)每個收納盒的售價定為多少元時,月銷售利潤恰為2520元?
(3)每件玩具的售價定為多少元時可使月銷售利潤最大?最大的月利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com