精英家教網 > 初中數學 > 題目詳情

【題目】(1)比較大小;

①|﹣2|+|3|   |﹣2+3|;

②|4|+|3|   |4+3|;

③|﹣|+|﹣|   |﹣+(﹣)|;

④|﹣5|+|0|   |﹣5+0|.

(2)通過(1)中的大小比較,猜想并歸納出|a|+|b|與|a+b|的大小關系,并說明a,b滿足什么關系時,|a|+|b|=|a+b|成立?

【答案】(1)>;=;=;=.(2)成立

【解析】

(1)①根據絕對值的意義得到|-2|+|3|=2+3=5,|-2+3|=1,比較大小即可求解;

②根據絕對值的意義得到|4|+|3|=4+3=7,|4+3|=7,比較大小即可求解;

③根據絕對值的意義得到|-|+|-|=+= ,|-+(-)|=,比較大小即可求解;

④根據絕對值的意義得到|-5|+|0|=5+0=5,|-5+0|=5,比較大小即可求解;

(2)根據前面的結論可得到,當a、b同號時,|a+b|=|a|+|b|.

解:(1)|﹣2|+|3|>|﹣2+3|;

|4|+|3|=|4+3|;

|﹣|+|﹣|=|﹣+(﹣)|;

|﹣5|+|0|=|﹣5+0|.

(2)|a|+|b||a+b|的大小關系:|a+b|≤|a|+|b|,

a,b滿足同號時,|a+b|=|a|+|b|.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平行四邊形ABCD中,E是AD上一點,AE=AB,過點E作直線EF,在EF上取一點G,使得∠EGB=∠EAB,連接AG.
(1)如圖①,當EF與AB相交時,若∠EAB=60°,求證:EG=AG+BG;
(2)如圖②,當EF與CD相交時,且∠EAB=90°,請你寫出線段EG、AG、BG之間的數量關系,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在△ABC中,P為邊AB上一點.

(1)如圖1,若∠ACP=∠B,求證:AC2=APAB;
(2)若M為CP的中點,AC=2.
①如圖2,若∠PBM=∠ACP,AB=3,求BP的長;
②如圖3,若∠ABC=45°,∠A=∠BMP=60°,直接寫出BP的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在數軸上,點A表示﹣10,點B表示11,點C表示18.動點P從點A出發(fā),沿數軸正方向以每秒2個單位的速度勻速運動;同時,動點Q從點C出發(fā),沿數軸負方向以每秒1個單位的速度勻速運動.設運動時間為t秒.

(1)當t為何值時,P、Q兩點相遇?相遇點M所對應的數是多少?

(2)在點Q出發(fā)后到達點B之前,求t為何值時,點P到點O的距離與點Q到點B的距離相等;

(3)在點P向右運動的過程中,NAP的中點,在點P到達點C之前,求2CN﹣PC的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知∠ABM=37°,AB=20,C是射線BM上一點.

(1)求點A到BM的距離;
(2)在下列條件中,可以唯一確定BC長的是;(填寫所有符合條件的序號)
①AC=13;②tan∠ACB= ;③連接AC,△ABC的面積為126.
(3)在(2)的答案中,選擇一個作為條件,畫出草圖,求BC.
(參考數據:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一件工程甲獨做50天可完,乙獨做75天可完,現(xiàn)在兩個人合作,但是中途乙因事離開幾天,從開工后40天把這件工程做完,則乙中途離開了( 。┨欤

A. 10 B. 20 C. 30 D. 25

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】列方程解應用題

甲、乙兩人同時從相距25千米的A地去B ,甲騎車乙步行甲的速度是乙的速度的3倍,甲到達B地停留40分鐘,然后從B地返回A地,在途中遇見乙,這時距他們出發(fā)的時間恰好3小時求兩人的速度各是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某班將買一些乒乓球和乒乓球拍,現(xiàn)了解情況如下:甲、乙兩家商店出售兩種同樣品牌的乒乓球和乒乓球拍.乒乓球拍每副定價30元,乒乓球每盒定價5元,經洽談后,甲店每買一副球拍贈一盒乒乓球,乙店全部按定價的9折優(yōu)惠.該班需球拍5副,乒乓球若干盒(不小于5盒).請解答下列問題:

(1)如果購買乒乓球不小于5)盒,則在甲店購買需付款 元,在乙店購買需付款 元。(用的代數式表示)

(2)當購買乒乓球多少盒時,在兩店購買付款一樣?

(3)如果給你450元,讓你選擇一家商店去辦這件事,你打算去哪家商店購買?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形OABC的兩邊OA、OC在坐標軸上,且OC=2OA,M、N分別為OA、OC的中點,BM與AN交于點E,若四邊形EMON的面積為2,則經過點B的雙曲線的解析式為(
A.y=﹣
B.y=﹣
C.y=﹣
D.y=﹣

查看答案和解析>>

同步練習冊答案