【題目】下面是“用三角板畫圓的切線”的畫圖過(guò)程

如圖1,已知圓上一點(diǎn)A,畫過(guò)A點(diǎn)的圓的切線.

畫法:(1)如圖2,將三角板的直角頂點(diǎn)放在圓上任一點(diǎn)C(與點(diǎn)A不重合)處,使其一直角邊經(jīng)過(guò)點(diǎn)A,另一條直角邊與圓交于B點(diǎn),連接AB;

(2)如圖3,將三角板的直角頂點(diǎn)與點(diǎn)A重合,使一條直角邊經(jīng)過(guò)點(diǎn)B,畫出另一條直角邊所在的直線AD.

所以直線AD就是過(guò)點(diǎn)A的圓的切線.

請(qǐng)回答:該畫圖的依據(jù)是_______________________________________________

【答案】90°的圓周角所對(duì)的弦是直徑,經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線是圓的切線

【解析】試題分析:利用90°的圓周角所對(duì)的弦是直徑可得到AB為直徑,根據(jù)經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線是圓的切線可判斷直線AD就是過(guò)點(diǎn)A的圓的切線.

故答案為:90°的圓周角所對(duì)的弦是直徑,經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線是圓的切線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)決定在本校學(xué)生中,開(kāi)展足球、籃球、羽毛球、乒乓球四種活動(dòng),為了了解學(xué)生對(duì)這四種活動(dòng)的喜愛(ài)情況,學(xué)校隨機(jī)調(diào)查了該校名學(xué)生,看他們喜愛(ài)哪一種活動(dòng)(每名學(xué)生必選一種且只能從這四種活動(dòng)中選擇一種),現(xiàn)將調(diào)查的結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.

(1)=________,=_________

(2)請(qǐng)補(bǔ)全圖中的條形圖;

(3)在抽查的名學(xué)生中,喜愛(ài)打乒乓球的有10名同學(xué)(其中有4名女生,包括小紅、小梅),現(xiàn)將喜愛(ài)打乒乓球的同學(xué)平均分成兩組進(jìn)行訓(xùn)練,且女生每組分兩人,求小紅、小梅能分在同一組的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°AB=AC,點(diǎn)EAC上(且不與點(diǎn)A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF

1)請(qǐng)直接寫出線段AF,AE的數(shù)量關(guān)系 ;

2)將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),如圖,連接AE,請(qǐng)判斷線段AFAE的數(shù)量關(guān)系,并證明你的結(jié)論;

3)在圖的基礎(chǔ)上,將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn),請(qǐng)判斷(2)問(wèn)中的結(jié)論是否發(fā)生變化?若不變,結(jié)合圖寫出證明過(guò)程;若變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)店銷售某款童裝,每件售價(jià)60元,每星期可賣300件,為了促銷,該網(wǎng)店決定降價(jià)銷售.市場(chǎng)調(diào)查反映:每降價(jià)1元,每星期可多賣30件.已知該款童裝每件成本價(jià)40元,設(shè)該款童裝每件售價(jià)x元,每星期的銷售量為y件.

1)求yx之間的函數(shù)關(guān)系式;

2)當(dāng)每件售價(jià)定為多少元時(shí),每星期的銷售利潤(rùn)最大,最大利潤(rùn)多少元?

3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤(rùn),每星期至少要銷售該款童裝多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了你最喜歡的溝通方式調(diào)查問(wèn)卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問(wèn)題:

1)這次統(tǒng)計(jì)共抽查了多少名學(xué)生;在扇形統(tǒng)計(jì)圖中,表示“QQ”的扇形圓心角的度數(shù)是多少?

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)該校共有900名學(xué)生,請(qǐng)估計(jì)該校最喜歡用微信進(jìn)行溝通的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線與x軸交于點(diǎn)A,與雙曲線的一個(gè)交點(diǎn)為B(-1,4).

(1)求直線與雙曲線的表達(dá)式;

(2)過(guò)點(diǎn)B作BC⊥x軸于點(diǎn)C,若點(diǎn)P在雙曲線上,且△PAC的面積為4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=3x與反比例函數(shù)y=k≠0)的圖象交于A1m)和點(diǎn)B

1)求m,k的值,并直接寫出點(diǎn)B的坐標(biāo);

2)過(guò)點(diǎn)Pt,0)(-1≤t≤1)作x軸的垂線分別交直線y=3x與反比函數(shù)y=k≠0)的圖象于點(diǎn)E,F

當(dāng)t=時(shí),求線段EF的長(zhǎng);

0EF≤8,請(qǐng)根據(jù)圖象直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰△ABC三個(gè)頂點(diǎn)在⊙O上,直徑AB=12,P為弧BC上任意一點(diǎn)(不與B,C重合),直線CP交AB延長(zhǎng)線與點(diǎn)Q,2∠PAB+∠PDA=90°,下列結(jié)論:①若∠PAB=30°,則弧BP的長(zhǎng)為;②若PD//BC,則AP平分∠CAB;③若PB=BD,則,④無(wú)論點(diǎn)P在弧上的位置如何變化,CP·CQ為定值. 正確的是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線a // b,點(diǎn)AE在直線a上,點(diǎn)B、F在直線b上,∠ABC100°,BD平分∠ABC交直線a于點(diǎn)D,線段EF在線段AB的左側(cè).若將線段EF沿射線 AD的方向平移,在平移的過(guò)程中BD所在的直線與 EF所在的直線交于點(diǎn)P.試探索 ∠1的度數(shù)與∠EPB的度數(shù)有怎樣的關(guān)系?

為了解決以上問(wèn)題,我們不妨從EF的某些特殊位置研究,最后再進(jìn)行一般化.

(特殊化)

1)如圖,當(dāng)∠140°,且點(diǎn)P在直線a、b之間時(shí),求∠EPB的度數(shù);

2)當(dāng)∠170 °時(shí),求∠EPB的度數(shù);

(一般化)

3)當(dāng)∠1時(shí),求∠EPB的度數(shù).(直接用含n的代數(shù)式表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案