【題目】在正方形ABCD中,AB6,對(duì)角線ACBD相交于點(diǎn)O,EAB所在直線上一點(diǎn)(不與點(diǎn)B重合),將線段OE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°得到EF

1)如圖1,當(dāng)點(diǎn)E和點(diǎn)A重合時(shí),連接BF,直接寫出BF的長(zhǎng)為   

2)如圖2,點(diǎn)E在線段AB上,且AE1,連接BF,求BF的長(zhǎng);

3)若DGAG21,連接CFHCF的中點(diǎn),是否存在點(diǎn)E使GEH是以EG為直角邊的直角三角形?若存在,請(qǐng)直接寫出EB的長(zhǎng);若不存在,試說明理由.

【答案】13;(22;(3)存在,5

【解析】

1)先根據(jù)旋轉(zhuǎn)的性質(zhì)和正方形的性質(zhì)得,再證明,得;

2)如圖2,作輔助線,構(gòu)建全等三角形,證明,得,,計(jì)算的長(zhǎng),最后利用勾股定理可得結(jié)論;

3)先根據(jù),且,計(jì)算,,分三種情況:當(dāng)時(shí),的左側(cè)時(shí),如圖3,作輔助線,構(gòu)建全等三角形和直角三角形,設(shè),在中,根據(jù),列方程可得的值,從而得的長(zhǎng);當(dāng)時(shí),如圖4,同理作輔助線,設(shè),則,證明,列比例式可得結(jié)論,其中,就是,如圖5所示,不符合題意.

解:(1)如圖1,由旋轉(zhuǎn)得:,

四邊形是正方形,且邊長(zhǎng)為6,

,

,

,

故答案為:;

2)如圖2,過,過,

四邊形是正方形,

,

是等腰直角三角形,

,

,

,

,

,

,

,

,,

,

中,由勾股定理得:;

3)存在是以為直角邊的直角三角形;

,且,

,,

分三種情況:

當(dāng)時(shí),的左側(cè)時(shí),如圖3,過,交的延長(zhǎng)線于,過,交,過,過,過,

設(shè)

同理得

,,

的中點(diǎn),,

,

,

,

中,,

,

,

當(dāng)時(shí),(如圖6所示),

當(dāng)時(shí),

當(dāng)時(shí),如圖4,過,交的延長(zhǎng)線于,過,交,過,過,

設(shè),則,

同理得:,,

,

,,

,

,

,即,

,

解得:(舍5,

;

如圖5,當(dāng)重合時(shí),,此種情況不符合題意;

綜上,的長(zhǎng)是5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在⊙O中,AB為直徑,點(diǎn)C為圓上一點(diǎn),將劣弧沿弦AC翻折交AB于點(diǎn)D,連結(jié)CD.如圖,若點(diǎn)D與圓心O不重合,∠BAC25°,則∠DCA的度數(shù)( 。

A.35°B.40°C.45°D.65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,AB=4,C為半圓AB的中點(diǎn),P上一動(dòng)點(diǎn),延長(zhǎng)BP至點(diǎn)Q,使BPBQ=AB2.若點(diǎn)PA運(yùn)動(dòng)到C,則點(diǎn)Q運(yùn)動(dòng)的路徑長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把正方形鐵片OABC置于平面直角坐標(biāo)系中,頂點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)P1,2)在正方形鐵片上,將正方形鐵片繞其右下角的頂點(diǎn)按順時(shí)針方向依次旋轉(zhuǎn)90°,第一次旋轉(zhuǎn)至圖位置,第二次旋轉(zhuǎn)至圖位置……,則正方形鐵片連續(xù)旋轉(zhuǎn)2020次后,點(diǎn)P的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南洞庭大橋是南益高速公路上的重要橋梁,小芳同學(xué)在校外實(shí)踐活動(dòng)中對(duì)此開展測(cè)量活動(dòng).如圖,在橋外一點(diǎn)A測(cè)得大橋主架與水面的交匯點(diǎn)C的俯角為α,大橋主架的頂端D的仰角為β,已知測(cè)量點(diǎn)與大橋主架的水平距離ABa,則此時(shí)大橋主架頂端離水面的高CD( )

A.asinα+asinβB.acosα+acosβC.atanα+atanβD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為慶祝建國(guó)周年,東營(yíng)市某中學(xué)決定舉辦校園藝術(shù)節(jié).學(xué)生從書法、繪畫、聲樂、器樂、舞蹈五個(gè)類別中選擇一類報(bào)名參加.為了了解報(bào)名情況,組委會(huì)在全校隨機(jī)抽取了若干名學(xué)生進(jìn)行問卷調(diào)查,現(xiàn)將報(bào)名情況繪制成如圖所示的不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:

1)在這次調(diào)查中,一共抽取了多少名學(xué)生?

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)在扇形統(tǒng)計(jì)圖中,求聲樂類對(duì)應(yīng)扇形圓心角的度數(shù);

4)小東和小穎報(bào)名參加器樂類比賽,現(xiàn)從小提琴、單簧管、鋼琴、電子琴四種樂器中隨機(jī)選擇一種樂器,用列表法或畫樹狀圖法求出他們選中同一種樂器的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】積極響應(yīng)政府提出的“綠色發(fā)展·碳出行”號(hào)召,某社區(qū)決定購(gòu)置一批共享單車,經(jīng)市場(chǎng)調(diào)查知,購(gòu)買3量男式單車與4輛女式單車費(fèi)用相同,購(gòu)買5輛男式單車與4輛女式單車共需16000元.

(1)求男式單車和女式單車的單價(jià);

(2)該社區(qū)要求男式單比女式單車多4輛,兩種單車至少需要22輛,購(gòu)置兩種單車的費(fèi)用不超過50000元,該社區(qū)有幾種購(gòu)置方案?怎樣購(gòu)置才能使所需總費(fèi)用最低,最低費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為進(jìn)一步提升教育教學(xué)質(zhì)量,調(diào)動(dòng)學(xué)生學(xué)習(xí)的興趣,某校在七年級(jí)學(xué)生中開展了對(duì)語文、數(shù)學(xué)、英語、歷史、地理這五門課程的興趣愛好情況的調(diào)查,以便采取必要教學(xué)改革,激發(fā)學(xué)生對(duì)各學(xué)科的興趣愛好.隨機(jī)選取該年級(jí)部分學(xué)生進(jìn)行調(diào)查,要求每名學(xué)生從中選出一門最感興趣的課程(每名學(xué)生只能選一門,不能多選),以下是根據(jù)調(diào)查結(jié)果繪制的不完整統(tǒng)計(jì)圖表:

課程代號(hào)

課程名稱

語文

|數(shù)學(xué)

英語

歷史

地理

最感興趣人數(shù)

12

30

54

9

請(qǐng)你根據(jù)以上信息,解答下列問題:

1)被調(diào)查學(xué)生的總數(shù)為______人,______,______;

2)被調(diào)查學(xué)生中,最喜愛課程的“眾數(shù)”是______;

3)若該年級(jí)共有800名學(xué)生,請(qǐng)估計(jì)該年級(jí)對(duì)語文最感興趣的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市少年宮為小學(xué)生開設(shè)了繪畫、音樂、舞蹈和跆拳道四類興趣班,為了解學(xué)生對(duì)這四類興趣班的喜愛情況,對(duì)學(xué)生進(jìn)行了隨機(jī)問卷調(diào)查(問卷調(diào)查表如圖所示),將調(diào)查結(jié)果整理后繪制了一幅不完整的統(tǒng)計(jì)表

最受歡迎興趣班調(diào)查問卷

統(tǒng)計(jì)表

選項(xiàng)

興趣班

請(qǐng)選擇

興趣班

頻數(shù)

頻率

A

繪畫

A

0.35

B

音樂

B

18

0.30

C

舞蹈

C

15

D

跆拳道

D

6

你好!請(qǐng)選擇一個(gè)(只能選一個(gè))你最喜歡的興趣班,在其后空格內(nèi)打“”,謝謝你的合作.

1

請(qǐng)你根據(jù)統(tǒng)計(jì)表中提供的信息回答下列問題:

1)統(tǒng)計(jì)表中的 ,

2)根據(jù)調(diào)查結(jié)果,請(qǐng)你估計(jì)該市2000名小學(xué)生中最喜歡“繪畫”興趣的人數(shù);

3)王姝和李要選擇參加興趣班,若他們每人從A、B、C、D四類興趣班中隨機(jī)選取一類,請(qǐng)用畫樹狀圖或列表格的方法,求兩人恰好選中同一類的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案