【題目】(1)如圖,為正三角形,點(diǎn)為邊上任意一點(diǎn),以為邊作正,連接,求的值;
(2)如圖,為等腰直角三角形,,點(diǎn)為腰上任意一點(diǎn),以為斜邊作等腰直角,連接,求的值;
(3)如圖,為任意等腰三角形,點(diǎn)為腰上任意一點(diǎn),以為底邊作等腰,使,并且BC=AC,連接,寫出的值,并說(shuō)明理由.
【答案】(1)1;(2) (3).
【解析】
(1)由三角形ABC與三角形CDE都為正三角形,得到AB=AC,CE=CD,以及內(nèi)角為60°,利用等式的性質(zhì)得到∠ECB=∠DCA,利用SAS得到三角形ECB與三角形DCA全等,利用全等三角形對(duì)應(yīng)邊相等得到BE=AD,即可求出所求之比;
(2)由三角形CDE與三角形ABC都為等腰直角三角形,利用等腰直角三角形的性質(zhì)得到CE=CD,BC=AC,以及銳角為45°,利用等式的性質(zhì)得到∠ECB=∠DCA,利用兩邊對(duì)應(yīng)成比例且?jiàn)A角相等的三角形相似得到三角形ECB與三角形DCA相似,利用相似三角形對(duì)應(yīng)邊成比例即可求出所求之比;
(3)仿照前兩問(wèn),推理過(guò)程類似,求出所求之比即可.
(1)∵△ABC和△CDE都是正三角形,
∴∠B=∠ACB=∠DCE=60°,AB=AC,CE=DC,
∵∠ECB=∠ACB-∠ACE=60°-∠ACE,
∠DCA=∠DCE-∠ACE=60°-∠ACE,
∴∠ECB=∠DCA,
在△ECB和△DCA中,
,
∴△ECB≌△DCA(SAS),
∴BE=AD,
則=1;
(2 )∵等腰Rt△ABC和等腰Rt△CDE中,
∴∠B=∠ACB=∠DCE=45°,CE=DC,BC=AC,
∴,
∵∠ECB=∠ACB-∠ACE=45°-∠ACE,
∠ACD=∠DCE-∠ACE=45°-∠ACE,
∴∠ECB=∠DCA,
∴△ECB∽△DCA,
∴;
(3)依此類推,當(dāng)BC=AC時(shí),,理由為:
∵等腰△ABC和等腰△CDE中,
∴∠B=∠ACB=∠DCE,CE=DC,BC=AC,
∴,
∵∠ECB=∠ACB-∠ACE,∠ACD=∠DCE-∠ACE,
∴∠ECB=∠DCA,
∴△ECB∽△DCA,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+3交y軸于點(diǎn)A,交x軸于點(diǎn)B(-3,0)和點(diǎn)C(1,0),頂點(diǎn)為點(diǎn)M.
(1)求拋物線的解析式;
(2)如圖,點(diǎn)E為x軸上一動(dòng)點(diǎn),若△AME的周長(zhǎng)最小,請(qǐng)求出點(diǎn)E的坐標(biāo);
(3)點(diǎn)F為直線AB上一個(gè)動(dòng)點(diǎn),點(diǎn)P為拋物線上一個(gè)動(dòng)點(diǎn),若△BFP為等腰直角三角形,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠C=60°,∠A=30°,CD=BC.
(1)求∠B+∠D的度數(shù).
(2)連接AC,探究AD,AB,AC三者之間的數(shù)量關(guān)系,并說(shuō)明理由.
(3)若BC=2,點(diǎn)E在四邊形ABCD內(nèi)部運(yùn)動(dòng),且滿足DE2=CE2+BE2,求點(diǎn)E運(yùn)動(dòng)路徑的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),如表是函數(shù)的幾組對(duì)應(yīng)值:
x | 0 | 1 | 2 | 3 | 4 | ||||||||
y | 0 |
請(qǐng)你根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),利用表格所反映出的y與x之間的變化規(guī)律,對(duì)該函數(shù)的圖象與性質(zhì)進(jìn)行探究下面是小騰的探究過(guò)程,請(qǐng)補(bǔ)充完整.
如圖所示,在平面直角坐標(biāo)系xOy中,描出了上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn)根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象
根據(jù)函數(shù)圖象,按要求填空:
在y軸左側(cè)該函數(shù)圖象有最______點(diǎn),其坐標(biāo)為______.
當(dāng)時(shí),該函數(shù)y隨x的增大而______.
當(dāng)方程只有一個(gè)解時(shí),則a的取值范圍為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖一,菱形與菱形的頂點(diǎn)重合,點(diǎn)在對(duì)角線上,且.
(1)問(wèn)題發(fā)現(xiàn):
的值為________;
(2)探究與證明:
將菱形繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)角(),如圖二所示,試探究線段與之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)拓展與運(yùn)用:
菱形在旋轉(zhuǎn)過(guò)程中,當(dāng)點(diǎn),,三點(diǎn)在一條直線上時(shí),如圖三所示,連接并延長(zhǎng),交于點(diǎn),若,,則的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校準(zhǔn)備購(gòu)進(jìn)一批A、B兩型號(hào)節(jié)能燈,已知2只A型節(jié)能燈和3只B型節(jié)能燈共需31元;1只A型節(jié)能燈和2只B型節(jié)能燈共需19元.
(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價(jià)各是多少元?
(2)學(xué)校準(zhǔn)備購(gòu)進(jìn)這兩種型號(hào)的節(jié)能燈共100只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的2倍,請(qǐng)?jiān)O(shè)計(jì)出最省錢的購(gòu)買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,P為邊BC上一動(dòng)點(diǎn),PE⊥AB于E,PF⊥AC于F,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿著BC勻速向終點(diǎn)C運(yùn)動(dòng),則線段EF的值大小變化情況是( 。
A. 一直增大B. 一直減小C. 先減小后增大D. 先增大后減少
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點(diǎn),DF與對(duì)角線AC交于點(diǎn)M,過(guò)M作ME⊥CD于點(diǎn)E,∠1=∠2.
(1)若CE=1,求BC的長(zhǎng);
(2)求證:AM=DF+ME.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在同一直線噵路上同起點(diǎn),同方向同進(jìn)出發(fā),分別以不同的速度勻速跑步1500米,當(dāng)甲超出乙200米時(shí),甲停下來(lái)等候乙,甲、乙會(huì)合后,兩人分別以原來(lái)的速度繼續(xù)跑向終點(diǎn),先到達(dá)終點(diǎn)的人在終點(diǎn)休息,在跑步的整個(gè)過(guò)程中,甲、乙兩人的距離y(米)與出發(fā)的時(shí)間x(秒)之間的關(guān)系如圖所示,則甲到終點(diǎn)時(shí),乙距離終點(diǎn)______________米。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com