精英家教網(wǎng)如圖,正方體的每一個(gè)面上都有一個(gè)正整數(shù),已知相對(duì)的兩個(gè)面上兩數(shù)之和都相等.如果13、9、3對(duì)面的數(shù)分別為a、b、c,則a2+b2+c2-ab-bc-ca的值等于( 。
A、48B、76C、96D、152
分析:本題須先求出a-b=-4,b-c=-6,c-a=10,再通過(guò)對(duì)要求的式子進(jìn)行化簡(jiǎn)整理,代入相應(yīng)的值即可求出結(jié)果.
解答:解:∵正方體的每一個(gè)面上都有一個(gè)正整數(shù),相對(duì)的兩個(gè)面上兩數(shù)之和都相等,
∴a+13=b+9=c+3,
∴a-b=-4,b-c=-6,c-a=10,
a2+b2+c2-ab-bc-ca=
2a2+2b2+2c2-2ab-2bc-2ca
2

=
(a-b)2+(b-c)2+(c-a)2
2
=
(-4)2+(-6)2+102
2
=76
故選B.
點(diǎn)評(píng):本題主要考查了整式的混合運(yùn)算-化簡(jiǎn)求值問(wèn)題,在解題時(shí)要注意知識(shí)的綜合運(yùn)用及與圖形結(jié)合問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖.正方體的每一個(gè)面上都有一個(gè)正整數(shù),并且相對(duì)面所寫的兩個(gè)數(shù)的和都相等,若10的對(duì)面是數(shù)a,16的數(shù)的對(duì)面是b,21的對(duì)面是數(shù)c,則代數(shù)式(a-b)2+(b-c)2+(c-a)2的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖,正方體的每一個(gè)面上都有一個(gè)正整數(shù),已知相對(duì)的兩個(gè)面上兩數(shù)之和都相等.如果13、9、3對(duì)面的數(shù)分別為a、b、c,則a2+b2+c2-ab-bc-ca的值等于


  1. A.
    48
  2. B.
    76
  3. C.
    96
  4. D.
    152

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖.正方體的每一個(gè)面上都有一個(gè)正整數(shù),并且相對(duì)面所寫的兩個(gè)數(shù)的和都相等,若10的對(duì)面是數(shù)a,16的數(shù)的對(duì)面是b,21的對(duì)面是數(shù)c,則代數(shù)式(a-b)2+(b-c)2+(c-a)2的值是


  1. A.
    179
  2. B.
    180
  3. C.
    181
  4. D.
    182

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年天津市初中數(shù)學(xué)競(jìng)賽試卷(解析版) 題型:選擇題

如圖,正方體的每一個(gè)面上都有一個(gè)正整數(shù),已知相對(duì)的兩個(gè)面上兩數(shù)之和都相等.如果13、9、3對(duì)面的數(shù)分別為a、b、c,則a2+b2+c2-ab-bc-ca的值等于( )

A.48
B.76
C.96
D.152

查看答案和解析>>

同步練習(xí)冊(cè)答案