分析 (1)由第一次可得5個(gè)正方形,第二次可得9個(gè)正方形,第三次可得13個(gè)正方形,可得規(guī)律:第n次可得(4n+1)個(gè)正方形,繼而求得答案;
(2)由規(guī)律可得方程4n+1=805,繼而求得答案;
(3)由規(guī)律可得4n+1=2015,又由n為整數(shù),可求得答案;
(4)此題可看作上面幾何體面積問(wèn)題,即可求得答案.
解答 解:(1)∵第一次可得5個(gè)正方形,第二次可得9個(gè)正方形,第三次可得13個(gè)正方形,
∴第n次可得(4n+1)個(gè)正方形,
∴第100次可得正方形:4×100+1=401(個(gè));
故答案為:401;
(2)根據(jù)題意得:4n+1=805,
解得:n=201;
∴第201次劃分后能有805個(gè)正方形;
(3)不能,
∵4n+1=2015,
解得:n=503.5,
∴n不是整數(shù),
∴不能將正方形性ABCD劃分成有2015個(gè)正方形的圖形;
(4)結(jié)合題意得:$\frac{3}{4}$(1+$\frac{1}{4}$+$\frac{1}{{4}^{2}}$+$\frac{1}{{4}^{3}}$+…+$\frac{1}{{4}^{n}}$)=$\frac{3}{4}$+$\frac{3}{{4}^{2}}$+$\frac{3}{{4}^{3}}$+…+$\frac{3}{{4}^{n+1}}$=(1-$\frac{1}{4}$)+($\frac{1}{4}$-$\frac{1}{{4}^{2}}$)+($\frac{1}{{4}^{2}}$-$\frac{1}{{4}^{3}}$)+…+($\frac{1}{{4}^{n}}$-$\frac{1}{{4}^{n+1}}$)=1-$\frac{1}{{4}^{n+1}}$.
點(diǎn)評(píng) 此題考查了規(guī)律問(wèn)題.注意根據(jù)題意得到規(guī)律:第n次可得(4n+1)個(gè)正方形是解此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{18}$ | B. | $\sqrt{24}$ | C. | $\sqrt{48}$ | D. | $\sqrt{32}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-8)-8=0 | B. | (-$\frac{1}{3}$)×(-3)=1 | C. | -(-1)2=1 | D. | |-2|=-2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com