【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線l:y=﹣x﹣1,雙曲線y=,在l上取一點(diǎn)A1,過A1作x軸的垂線交雙曲線于點(diǎn)B1,過B1作y軸的垂線交l于點(diǎn)A2,請繼續(xù)操作并探究:過A2作x軸的垂線交雙曲線于點(diǎn)B2,過B2作y軸的垂線交l于點(diǎn)A3,…,這樣依次得到l上的點(diǎn)A1,A2,A3,…,An,…記點(diǎn)An的橫坐標(biāo)為an,若a1=2,則a2018=_____;若要將上述操作無限次地進(jìn)行下去,則a1不可能取的值是_____.
【答案】﹣; 0、﹣1
【解析】
求出a2,a3,a4,a5的值,可發(fā)現(xiàn)規(guī)律,繼而得出a2013的值,根據(jù)題意可得A1不能在x軸上,也不能在y軸上,從而可得出a1不可能取的值.
解:當(dāng)a1=2時,B1的縱坐標(biāo)為,
B1的縱坐標(biāo)和A2的縱坐標(biāo)相同,則A2的橫坐標(biāo)為a2=﹣,
A2的橫坐標(biāo)和B2的橫坐標(biāo)相同,則B2的縱坐標(biāo)為b2=﹣,
B2的縱坐標(biāo)和A3的縱坐標(biāo)相同,則A3的橫坐標(biāo)為a3=﹣,
A3的橫坐標(biāo)和B3的橫坐標(biāo)相同,則B3的縱坐標(biāo)為b3=﹣3,
B3的縱坐標(biāo)和A4的縱坐標(biāo)相同,則A4的橫坐標(biāo)為a4=2,
A4的橫坐標(biāo)和B4的橫坐標(biāo)相同,則B4的縱坐標(biāo)為b4=,
即當(dāng)a1=2時,a2=﹣,a3=﹣,a4=2,a5=﹣,
b1=,b2=﹣,b3=﹣3,b4=,b5=﹣,
∵=672…2,
∴a2018=a2=﹣;
點(diǎn)A1不能在y軸上(此時找不到B1),即x≠0,
點(diǎn)A1不能在x軸上(此時A2,在y軸上,找不到B2),即y=﹣x﹣1≠0,
解得:x≠﹣1;
綜上可得a1不可取0、﹣1.
故答案為:﹣;0、﹣1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+2ax﹣3a(a>0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求拋物線的對稱軸及線段AB的長;
(2)拋物線的頂點(diǎn)為P,若∠APB=120°,求頂點(diǎn)P的坐標(biāo)及a的值;
(3)若在拋物線上存在一點(diǎn)N,使得∠ANB=90°,結(jié)合圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中,直線y=mx與雙曲線相交于A(﹣1,a)、B兩點(diǎn),BC⊥x軸,垂足為C,△AOC的面積是1.
(1)求m、n的值;
(2)求直線AC的解析式.
(3)點(diǎn)P在雙曲線上,且△POC的面積等于△ABC面積的,求點(diǎn)P的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D在邊AB上,以點(diǎn)A為圓心,線段AD的長為半徑的⊙A與邊AC相交于點(diǎn)E,AF⊥DE,垂足為點(diǎn)F,AF的延長線與邊BC相交于點(diǎn)G,聯(lián)結(jié)GE.已知DE=10,cos∠BAG=,.求:
(1)⊙A的半徑AD的長;
(2)∠EGC的余切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC,BD交于O,EF過點(diǎn)O與AD,BC分別交于E,F,若AB=4,BC=5,OE=1.5,則四邊形EFCD的周長_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知點(diǎn)D、E、F分別為邊BC、AD、CE的中點(diǎn),若△ABC的面積為16,則圖中陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是所對弦上一動點(diǎn),點(diǎn)在的延長線上,過點(diǎn)作交于點(diǎn),連接,已知,,設(shè),兩點(diǎn)間的距離為,的面積為.(當(dāng)點(diǎn)與點(diǎn),重合時,的值為0.)
小亮根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)隨自變量的變化而變化的規(guī)律進(jìn)行了探究.
下面是小亮的探究過程,請補(bǔ)充完整:
(1)通過取點(diǎn)、畫圖、測量,得到了與的幾組值,如下表:
3 | 4 | 5 | 6 | 7 | 8 | 9 | |
0 | 4.47 | 7.07 | 9.00 | 8.94 | 0 |
(2)在平面直角坐標(biāo)系中,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)的面積為時,的長度約為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面上兩點(diǎn)A,B,給出如下定義:以點(diǎn)A或B為圓心,AB長為半徑的圓稱為點(diǎn)A,B的“確定圓”.如圖為點(diǎn)A,B的“確定圓”的示意圖.
(1)已知點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)為(3,3),則點(diǎn)A,B的“確定圓”的面積為______;
(2)已知點(diǎn)A的坐標(biāo)為(0,0),若直線y=x+b上只存在一個點(diǎn)B,使得點(diǎn)A,B的“確定圓”的面積為9π,求點(diǎn)B的坐標(biāo);
(3)已知點(diǎn)A在以P(m,0)為圓心,以1為半徑的圓上,點(diǎn)B在直線上,若要使所有點(diǎn)A,B的“確定圓”的面積都不小于9π,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx﹣12的圖象交x軸于A(﹣3,0),B(5,0)兩點(diǎn),與y軸交于點(diǎn)C.點(diǎn)D是拋物線上的一個動點(diǎn).
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)D的橫坐標(biāo)為m,并且當(dāng)m≤x≤m+5時,對應(yīng)的函數(shù)值y滿足﹣m,求m的值;
(3)若點(diǎn)D在第四象限內(nèi),過點(diǎn)D作DE∥y軸交BC于E,DF⊥BC于F.線段EF的長度是否存在最大值?若存在,請求出這個最大值及相應(yīng)點(diǎn)D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com