【題目】下列各數(shù)中互為相反數(shù)的是( )
A. 和-
B.
C.
D.

【答案】A
【解析】A項(xiàng)中,| |= 互為相反數(shù)。

B項(xiàng)中,| |= , < ,所以| |與 不互為相反數(shù)。

C項(xiàng)中,| |= , = ,| |與 相等,不互為相反數(shù)。

D項(xiàng)中,| |= , < ,| |與 不互為相反數(shù)。

所以答案是:A.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解相反數(shù)的相關(guān)知識,掌握只有符號不同的兩個(gè)數(shù),我們說其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;相反數(shù)的和為0;a+b=0 :a、b互為相反數(shù),以及對絕對值的理解,了解正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】α與β的兩邊分別平行,且α =(x+10)°,β =(2x-25)°,則α的度數(shù)為(

A.45° B.75° C.45°或75° D.45°或55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,BC=6cm.射線AG∥BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以1cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以2cm/s的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)連接EF,當(dāng)EF經(jīng)過AC邊的中點(diǎn)D時(shí),求證:△ADE≌△CDF;
(2)填空: ①當(dāng)t為s時(shí),四邊形ACFE是菱形;
②當(dāng)t為s時(shí),以A、F、C、E為頂點(diǎn)的四邊形是直角梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,△ABC中, BD平分∠ABC , 且與△ABC的外角∠ACE的角平分線交于點(diǎn)D

(1)若 , ,求∠D的度數(shù);
(2)若把∠A截去,得到四邊形MNCB , 如圖②,猜想∠D、∠M、∠N的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上到-1點(diǎn)的距離等于1個(gè)單位的點(diǎn)所表示的數(shù)是

A. 0 B. -1 C. 1-2 D. 0-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊邊長為6cm的正三角形紙板,在它的三個(gè)角處分別截去一個(gè)彼此全等的箏形,再沿圖中的虛線折起,做成一個(gè)無蓋的直三棱柱紙盒,則該紙盒側(cè)面積的最大值是(

A.cm2 B.cm2 C.cm2 D.cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩同學(xué)的家與學(xué)校的距離均為3000米.甲同學(xué)先步行600米,然后乘公交車去學(xué)校、乙同學(xué)騎自行車去學(xué)校.已知甲步行速度是乙騎自行車速度的 ,公交車的速度是乙騎自行車速度的2倍.甲乙兩同學(xué)同時(shí)從家發(fā)去學(xué)校,結(jié)果甲同學(xué)比乙同學(xué)早到2分鐘.
(1)求乙騎自行車的速度;
(2)當(dāng)甲到達(dá)學(xué)校時(shí),乙同學(xué)離學(xué)校還有多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,已知AD=8,折疊紙片,使AB邊與對角線AC重合,點(diǎn)B落在點(diǎn)F處,折痕為AE,且EF=3,則AB的長為( )

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以O(shè)B為一邊,在△OAB外作等邊三角形OBC,D是OB的中點(diǎn),連接AD并延長交OC于E.

(1)求點(diǎn)B的坐標(biāo);

(2)求證:四邊形ABCE是平行四邊形;

(3)如圖2,將圖1中的四邊形ABCO折疊,使點(diǎn)C與點(diǎn)A重合,折痕為FG,求OG的長.

查看答案和解析>>

同步練習(xí)冊答案