下列關于x的一元二次方程中,有兩個不相等的實數(shù)根的方程是( )
A.x2+1=0
B.x2+x-1=0
C.x2+2x+3=0
D.4x2-4x+1=0
【答案】分析:根據(jù)一元二次方程根的判別式,分別計算△的值,根據(jù)△>0,方程有兩個不相等的實數(shù)根;△=0,方程有兩個相等的實數(shù)根;△<0,方程沒有實數(shù)根,進行判斷.
解答:解:A、△=-4<0,方程沒有實數(shù)根;
B、△=5>0,方程有兩個不相等的實數(shù)根;
C、△=4-12=-8<0,方程沒有實數(shù)根;
D、△=16-16=0,方程有兩個相等的實數(shù)根.
故選B.
點評:此題考查了用一元二次方程的根的判別式判定方程的根的情況的方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

若x1,x2是關于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根,則方程的兩個根x1,x2和系數(shù)a,b,c有如下關系:x1+x2=-
b
a
,x1x2=
c
a
.我們把它們稱為根與系數(shù)關系定理.
如果設二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0).利用根與系數(shù)關系定理我們又可以得到A、B兩個交點間的距離為:
AB=|x1-x2|=
(x1+x2)2-4x1x2
=
(-
b
a
)
2
-
4c
a
=
b2-4ac
a2
=
b2-4ac
|a|

請你參考以上定理和結論,解答下列問題:
設二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0),拋物線的頂點為C,顯然△ABC為等腰三角形.
(1)當△ABC為等腰直角三角形時,求b2-4ac的值;
(2)當△ABC為等邊三角形時,b2-4ac=
 
;
(3)設拋物線y=x2+kx+1與x軸的兩個交點為A、B,頂點為C,且∠ACB=90°,試問如何平移此拋物線,才能使∠ACB=60°?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•天津)若關于x的一元二次方程(x-2)(x-3)=m有實數(shù)根x1、x2,且x1≠x2,有下列結論:
①x1=2,x2=3;②m>-
1
4
;③二次函數(shù)y=(x-x1)(x-x2)+m的圖象與x軸交點的坐標為(2,0)和(3,0).
其中,正確結論的個數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學 來源:新教材新學案數(shù)學九年級上冊 題型:044

將下列關于x的一元二次方程化成一般形式,再寫出它的二次項系數(shù)、一次項系數(shù)及常數(shù)項.

(1)2x(x-1)=3(x+5)-4;

(2)(ax-b)2-(a-bx)2=a2+b2(a≠±b).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

把下列關于x的一元二次方程化成一般形式,再寫出它的二次項系數(shù)、一次項系數(shù)和常數(shù)項.

 (x+1)(x-1)= 3;                         

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

把下列關于x的一元二次方程化成一般形式,再寫出它的二次項系數(shù)、一次項系數(shù)和常數(shù)項.

 (x-5)2+(x-3)2=16.

查看答案和解析>>

同步練習冊答案