【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,過(guò)點(diǎn)C的直線與AB的延長(zhǎng)線交于點(diǎn)P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)點(diǎn)M是弧AB的中點(diǎn),CM交AB于點(diǎn)N,若AB=4,求MN·MC的值.
【答案】(1)證明見(jiàn)解析;(2)8.
【解析】試題分析:(1)已知C在圓上,故只需證明OC與PC垂直即可;根據(jù)圓周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是 O的切線;(2)連接MA,MB,由圓周角定理可得∠ACM=∠BCM,進(jìn)而可得△MBN∽△MCB,故BM2=MNMC;代入數(shù)據(jù)可得MNMC=BM2=8.
試題解析:(1)證明:∵OA=OC,
∴∠A=∠ACO.
又∵∠COB=2∠A,∠COB=2∠PCB,
∴∠A=∠ACO=∠PCB.
又∵AB是O的直徑,
∴∠ACO+∠OCB=90°.
∴∠PCB+∠OCB=90°,OC⊥CP.
∵OC是O的半徑,
∴PC是O的切線。
(2)連接MA,MB,
∵點(diǎn)M是的中點(diǎn),
∴ =.
∴∠ACM=∠BCM.
∵∠ACM=∠ABM,
∴∠BCM=∠ABM.
∵∠BMN=∠BMC,
∴△MBN∽△MCB.
∴.
∴BM2=MNMC.
又∵AB是O的直徑,AM=BM,
∴∠AMB=90°,AM=BM.
∵AB=4,
∴BM=.
∴MNMC=BM2=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把一張長(zhǎng)方形紙片ABCD按圖中的方式折疊,使點(diǎn)A與點(diǎn)E重合,點(diǎn)C與點(diǎn)F重合(E,F兩點(diǎn)均在BD上),折痕分別為BH,DG.試說(shuō)明:△BHE≌△DGF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,一元二次方程x2﹣8x+15=0的兩根分別是⊙O1和⊙O2的半徑,當(dāng)⊙O1和⊙O2相切時(shí),O1O2的長(zhǎng)度是( )
A.2
B.8
C.2或8
D.2<O1O2<8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△POQ中,OP=OQ=4,M是PQ中點(diǎn),∠P=∠Q=45°,將一三角尺的直角頂點(diǎn)放在點(diǎn)M處,以M為旋轉(zhuǎn)中心旋轉(zhuǎn)三角尺,三角尺的兩直角邊與△POQ的兩直角邊分別交于點(diǎn)A、B.試說(shuō)明:MA=MB.
+
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司的電話號(hào)碼是八位數(shù),這個(gè)號(hào)碼的前四位數(shù)字相同,后五位數(shù)字是連續(xù)減少1的自然數(shù),全部數(shù)字之和恰好等于號(hào)碼的最后兩位數(shù),那么,該公司的電話號(hào)碼是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們給出如下定義:若一個(gè)四邊形的兩條對(duì)角線相等,則稱這個(gè)四邊形為等對(duì)角線四邊形.請(qǐng)解答下列問(wèn)題:
(1)寫(xiě)出你所學(xué)過(guò)的特殊四邊形中是等對(duì)角線四邊形的兩種圖形的名稱;
(2)探究:當(dāng)?shù)葘?duì)角線四邊形中兩條對(duì)角線所夾銳角為60°時(shí),這對(duì)60°角所對(duì)的兩邊之和與其中一條對(duì)角線的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com