如圖,AE是⊙O的切線,切點為A,BC∥AE,BD平分∠ABC交AE于點D,交AC于點F
(1)求證:AC=AD;
(2)若BC=,F(xiàn)C=,求AB長.

【答案】分析:(1)要證DE是⊙O的切線,只要連接OC,再證∠DCO=90°即可.
(2)已知兩邊長,求其它邊的長,可以來三角形相似,對應(yīng)邊成比例來求.
解答:(1)證明:作直徑AG交BC于H,

∵AE是⊙O的切線,切點為A,
∴AG⊥AD,
∵BC∥AE,
∴AG⊥BC,
∵AG為直徑,
∴AG是BC的垂直平分線,
∴AB=AC,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∵BC∥AE,
∴∠ADB=∠DBC,
∴∠ABD=∠ADB,
∴AD=AB,
∴AC=AD.

(2)解:設(shè)AB=x,則AC=AD=x
∵BC∥AE,
∴△ADF∽△CBF,


∴x=6+3
點評:本題考查了切線的判定、相似三角形的性質(zhì)和勾股定理的運用.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

3、如圖,AB是⊙O的直徑,DE切⊙O于點C,需使AE⊥DE,須加的一個條件是
∠OAC=∠CAE
(不另添加線和點).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB是⊙O的直徑,P為AB延長線上一點,PD切⊙O于點C,BC和AD的延長線相交于精英家教網(wǎng)點E,且AD⊥PD.
(1)求證:AB=AE;
(2)當(dāng)AB:BP為何值時,△ABE為等邊三角形并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,AB是⊙O的直徑,PB切⊙O于點B,PA交⊙O于點C,∠A=60°,∠APB的平分線PF分別交BC、AB于點D、E,交⊙O于點F、G,且BD•AE=2
3

(1)求證:△BPD∽△APE;
(2)求FE•EG的值;
(3)求tan∠BDE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

1、已知:如圖,CD是⊙O的直徑,AE切⊙O于點B,DC的延長線交AB于點A,∠A=20°,則∠DBE=
55
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB是⊙O的直徑,BC切⊙O于B,D是BC的中點,AC交⊙O于點E.已知,AB=2
5
,DE=
7
,則AE=
 
(用準(zhǔn)確值表示).

查看答案和解析>>

同步練習(xí)冊答案