【題目】某商場經(jīng)營某種品牌的玩具,進價是20元,根據(jù)市場調查:在一段時間內,銷售單價是30元時,銷售量是500件,而銷售單價每漲1元,就會少售出10件玩具.
(1)不妨設該種品牌玩具的銷售單價為x元(x>30),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結果填寫在表格中:

銷售單價(元)

x

銷售量y(件)

銷售玩具獲得利潤w(元)


(2)在(1)問條件下,若商場獲得了8000元銷售利潤,求該玩具銷售單價x應定為多少元.
(3)在(1)問條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于35元,且商場要完成不少于350件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?

【答案】
(1)解:根據(jù)題意,知:銷售單價為x元時,銷售量y=500﹣10(x﹣30)=﹣10x+800,

則銷售玩具的利潤w=(x﹣20)(﹣10x+800)=﹣10x2+1000x﹣16000,

完成表格如下:

銷售單價(元)

x

銷售量y(件)

﹣10x+800

銷售玩具獲得利潤w(元)

﹣10x2+1000x﹣16000


(2)解:當w=8000時,有﹣10x2+1000x﹣16000=8000,

解得:x=60或x=40,

答:該玩具銷售單價x應定為40元或60元


(3)解:由題意知, ,

解得:35≤x≤45,

∵w=﹣10x2+1000x﹣16000=﹣10(x﹣50)2+9000,

∴當x<50時,w隨x的增大而增大,

∴當x=45時,w取得最大值,最大值為8750元.

答:商場銷售該品牌玩具獲得的最大利潤是8750元


【解析】(1)根據(jù)“銷售量=原銷量﹣因價格上漲而減少的銷售量”、“總利潤=單件利潤×銷售量”可得函數(shù)解析式;(2)求出w=8000時x的值即可得;(3)先根據(jù)“銷售單價不低于35元,且商場要完成不少于350件的銷售任務”求得x的范圍,再將w=﹣10x2+1000x﹣16000配方成頂點式,利用二次函數(shù)的性質求解可得.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術的廣泛應用,催生了快遞行業(yè)的高速發(fā)展,小明計劃給朋友快遞一部分物品,經(jīng)了解有甲乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費;超過1千克,超過的部分按每千克15元收費.乙公司表示:按每千克16元收費,另加包裝費3元.設小明快遞物品x千克.
(1)根據(jù)題意,填寫下表:

重量(千克)
費用(元)

0.5

1

3

4

甲公司

22

67

乙公司

11

51


(2)請分別寫出甲乙兩家快遞公司快遞該物品的費用y(元)與x(千克)之間的函數(shù)關系式;
(3)小明應選擇哪家快遞公司更省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,平行四邊形OABC的頂點A,B的坐標分別為(6,0),(7,3),將平行四邊形OABC繞點O逆時針方向旋轉得到平行四邊形OA′B′C′,當點C′落在BC的延長線上時,線段OA′交BC于點E,則線段C′E的長度為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠A=C=90°,BE,DF分別是∠ABC,ADC的平分線.

11與∠2有什么關系,為什么?

2BEDF有什么關系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形ABCD的兩條對角線相交于點O,過點A作AG⊥BD分別交BD、BC于點G、E.
(1)求證:BE2=EGEA;
(2)連接CG,若BE=CE,求證:∠ECG=∠EAC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A,D,E三點共線,C,B,F三點共線,AB=CD,AD=CB,DE=BF,那么BE與DF之間有什么數(shù)量關系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:
(1)(﹣3)2﹣(+4 )+(﹣1
(2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,OM⊥AB.

(1)若∠1=∠2,求∠NOD.

(2)若∠1=∠BOC,求∠AOC與∠MOD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】邊長為a的等邊三角形,記為第1個等邊三角形,取其各邊的三等分點,順次連接得到一個正六邊形,記為第1個正六邊形,取這個正六邊形不相鄰的三邊中點,順次連接又得到一個等邊三角形,記為第2個等邊三角形,取其各邊的三等分點,順次連接又得到一個正六邊形,記為第2個正六邊形(如圖),,按此方式依次操作,則第6個正六邊形的邊長為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案