分析 (1)由平行四邊形的性質(zhì)得出AB∥CD,AD=BC,AB=CD,由平行線的性質(zhì)證出∠FAB=∠F,由AAS證明△ABE≌△FCE即可;
(2)由全等三角形的性質(zhì)得出AE=EF,BF=CE,AB=CD=CF,因此AD=2BE,DF=2AB,AF=2AE,即可得出結(jié)論.
解答 證明:(1)在平行四邊形ABCD中,AB∥CD,AD=BC,AB=CD,
∴∠FAB=∠F,
∵E為BC中點(diǎn),
∴BE=CE=$\frac{1}{2}$AD,
在△ABE和△FCE中,$\left\{\begin{array}{l}{∠AEB=∠FEC}&{\;}\\{∠FAB=∠F}&{\;}\\{BE=CE}&{\;}\end{array}\right.$,
∴△ABE≌△FCE(AAS).
(2)由(1)得:△ABE≌△FCE,
∴AE=EF,BF=CE,AB=CD=CF,
∴AD=2BE,DF=2AB,AF=2AE.
∴$\frac{△ABE的周長}{△AFD的周長}=\frac{1}{2}$.
點(diǎn)評 此題主要考查平行四邊形的性質(zhì)、全等三角形的判定與性質(zhì);熟練掌握平行四邊形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | a2-2ab+b2-1=(a-b)2-1 | B. | 2x2$+2x=2{x}^{2}(1+\frac{1}{x})$ | ||
C. | (x+2)(x-2)=x2-4 | D. | x2-6x+9=(x-3)2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com