【題目】如圖,已知△ABC是邊長為3的等邊三角形,點D是邊BC上的一點,且BD1,以AD為邊作等邊△ADE,過點EEFBC,交AC于點F,連接BF,則下列結(jié)論中ABD≌△BCF;四邊形BDEF是平行四邊形;S四邊形BDEF;SAEF.其中正確的有(  )

A. 1B. 2C. 3D. 4

【答案】C

【解析】

連接EC,作CHEFH.首先證明BAD≌△CAE,再證明EFC是等邊三角形即可解決問題;

連接EC,作CHEFH

∵△ABCADE都是等邊三角形,

ABAC,ADAE,∠BAC=∠DAE=∠ABC=∠ACB60°

∴∠BAD=∠CAE,

∴△BAD≌△CAE

BDEC1,∠ACE=∠ABD60°,

EFBC

∴∠EFC=∠ACB60°,

∴△EFC是等邊三角形,CH,

EFECBD,∵EFBD,

∴四邊形BDEF是平行四邊形,故②正確,

BDCF1,BABC,∠ABD=∠BCF

∴△ABD≌△BCF,故①正確,

S平行四邊形BDEFBDCH,

故③正確,

∵△ABC是邊長為3的等邊三角形,SABC

SABD

SAEF SAECSABD

故④錯誤,

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=ACA=36°,稱滿足此條件的三角形為黃金等腰三角形.請完成以下操作:(畫圖不要求使用圓規(guī),以下問題所指的等腰三角形個數(shù)均不包括ABC

1)在圖1中畫1條線段,使圖中有2個等腰三角形,并直接寫出這2個等腰三角形的頂角度數(shù)分別是      度和      度;

2)在圖2中畫2條線段,使圖中有4個等腰三角形;

3)繼續(xù)按以上操作發(fā)現(xiàn):在ABC中畫n條線段,則圖中有      個等腰三角形,其中有      個黃金等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DN與ME相交于點O.若△OMN是直角三角形,則DO的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某校七年級800名學(xué)生的跳繩情況(60秒跳繩的次數(shù)),隨機對該年級50名學(xué)生進行了調(diào)查,根據(jù)收集的數(shù)據(jù)繪制了如圖所示的頻數(shù)分布直方圖(每組數(shù)據(jù)包括左端值不包括右端值,如最左邊第一組的次數(shù)x為:,則以下說法正確的是( )

A. 跳繩次數(shù)最多的是160

B. 大多數(shù)學(xué)生跳繩次數(shù)在140-160范圍內(nèi)

C. 跳繩次數(shù)不少于100次的占80%

D. 由樣本可以估計全年級800人中跳繩次數(shù)在60-80次的大約有70

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論中錯誤的有( )

RtABC已知兩邊長分別為34,則第三邊的長為5;

ABC的三邊長分別為ABBC,AC,+=,A=90°;

ABC,A:∠B:∠C=1:5:6,ABC是直角三角形;

若三角形的三邊長之比為3:4:5,則該三角形是直角三角形

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形AOBC和四邊形CDEF都是正方形,邊OA在x軸上,邊OB在y軸上,點D在邊CB上,反比例函數(shù)y= 在第二象限的圖象經(jīng)過點E,則正方形AOBC和正方形CDEF的面積之差為( )

A.12
B.10
C.8
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AEBD于點ECFBD于點F,連結(jié)AFCE

(1)求證:四邊形AECF是平行四邊形;

(2)AB6,AD2,∠ABD30°,求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近幾年,全社會對空氣污染問題越來越重視,空氣凈化器的銷量也在逐年增加.某商場從廠家購進了A、B兩種型號的空氣凈化器,兩種凈化器的銷售相關(guān)信息見下表:

A型銷售數(shù)量(臺)

B型銷售數(shù)量(臺)

總利潤(元)

5

10

2000

10

5

2500


(1)每臺A型空氣凈化器和B型空氣凈化器的銷售利潤分別是多少?
(2)該公司計劃一次購進兩種型號的空氣凈化器共100臺,其中B型空氣凈化器的進貨量不少于A型空氣凈化器的2倍,為使該公司銷售完這100臺空氣凈化器后的總利潤最大,請你設(shè)計相應(yīng)的進貨方案;
(3)已知A型空氣凈化器的凈化能力為300m3/小時,B型空氣凈化器的凈化能力為200m3/小時,某長方體室內(nèi)活動場地的總面積為200m2 , 室內(nèi)墻高3m,該場地負責(zé)人計劃購買5臺空氣凈化器每天花費30分鐘將室內(nèi)就歐諾個氣凈化一新,若不考慮空氣對流等因素,至少要購買A型空氣凈化器多少臺?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在△ABC中,∠ACB=90°,AC=BC,CDAB于點D,點E、F分別在ACBC上,且∠EDF90°.

1)求證:△AED≌△CFD;

2)試判斷CECFCD之間的數(shù)量關(guān)系,并說明理由;

3)若CF=1CE=3,試求DF的長.

查看答案和解析>>

同步練習(xí)冊答案