在四邊形ABCD中,∠A=∠B,∠C=∠ADC.
(1)求證:AB∥CD.
(2)若∠ADC-∠A=60°,過點D作DE∥BC交AB于點E.請判斷△ADE是哪種特殊三角形,并說明理由.
(1)見解析;(2)正三角形
【解析】
試題分析:(1)先根據(jù)多邊形的內(nèi)角和公式求出四邊形的內(nèi)角和,再由∠A=∠B,∠C=∠ADC可得∠B+∠C=(∠A+∠B+∠C+∠ADC)=180°,即可證得結(jié)論;
(2)由∠ADC+∠A=180°和∠ADC-∠A=60°得∠A=60°,即可得到∠AED=∠B=∠A=60°,從而得到結(jié)果。
(1)∵四邊形的內(nèi)角和等于,∠A=∠B,∠C=∠ADC,
∴∠B+∠C=(∠A+∠B+∠C+∠ADC)=180°,
∴AB∥CD;
(2)∵AB∥CD,
∴∠ADC+∠A=180°,
∵∠ADC-∠A=60°,
∴∠A=60°,
∴∠A=∠B=60°,
∵DE∥BC,
∴∠AED=∠B=∠A=60°,
∴△ADE是正三角形.
考點:本題考查的是多邊形的內(nèi)角和,平行線的判定和性質(zhì)
點評:解答本題的關(guān)鍵是熟練掌握多邊形的內(nèi)角和公式:;同旁內(nèi)角互補,兩直線平行;兩直線平行,同旁內(nèi)角互補.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com