精英家教網 > 初中數學 > 題目詳情

【題目】如圖,若點M軸正半軸上任意一點,過點MPQ∥軸,分別交函數的圖象于點PQ,連接OPOQ.則下列結論正確的是(

A.∠POQ不可能等于90°B.

C.這兩個函數的圖象一定關于軸對稱D.△POQ的面積是

【答案】D

【解析】

解:根據反比例函數的性質逐一作出判斷:

APM=MO=MQ時,∠POQ=90°,故此選項錯誤;

B.根據反比例函數的性質,由圖形可得:0,0,而PM,QM為線段一定為正值,故,故此選項錯誤;

C.根據的值不確定,得出這兩個函數的圖象不一定關于軸對稱,故此選項錯誤;

D∵||=PMMO,||=MQMO,

∴△POQ的面積=MOPQ=MOPM+MQ=MOPM+MOMQ=

故此選項正確.

故選D

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,以BC為直徑的⊙OAC于點D,過點D作⊙O的切線交AB于點M,交CB延長線于點N,連接OMOC1

1)求證:AMMD;

2)填空:

①若DN,則△ABC的面積為   ;

②當四邊形COMD為平行四邊形時,∠C的度數為   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,在平面直角坐標系xOy中,點A的坐標為(0,2),點P(m,n)是拋物線上的一個動點.

(1)如圖1,過動點PPBx軸,垂足為B,連接PA,請通過測量或計算,比較PAPB的大小關系:PA_____PB(直接填寫”““=”,不需解題過程);

(2)請利用(1)的結論解決下列問題:

①如圖2,設C的坐標為(2,5),連接PC,AP+PC是否存在最小值?如果存在,求點P的坐標;如果不存在,簡單說明理由;

②如圖3,過動點P和原點O作直線交拋物線于另一點D,若AP=2AD,求直線OP的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖的中,,且上一點.今打算在上找一點,在上找一點,使得全等,以下是甲、乙兩人的作法:

(甲)連接,作的中垂線分別交、點、點,則、兩點即為所求

(乙)過作與平行的直線交點,過作與平行的直線交點,則、兩點即為所求

對于甲、乙兩人的作法,下列判斷何者正確?( 。

A. 兩人皆正確B. 兩人皆錯誤

C. 甲正確,乙錯誤D. 甲錯誤,乙正確

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明放學后從學校回家,出發(fā)分鐘時,同桌小強發(fā)現(xiàn)小明的數學作業(yè)卷忘記拿了,立即拿著數學作業(yè)卷按照同樣的路線去追趕小明,小強出發(fā)分鐘時,小明才想起沒拿數學作業(yè)卷,馬上以原速原路返回,在途中與小強相遇.兩人離學校的路程(米)與小強所用時間(分鐘)之間的函數圖象如圖所示.

1)求函數圖象中的值;

2)求小強的速度;

3)求線段的函數解析式,并寫出自變量的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】14分)如圖1,△ABC△AED都是等腰直角三角形,∠BAC=∠EAD=90°,點B在線段AE上,點C在線段AD上.

1)請直接寫出線段BE與線段CD的關系: ;

2)如圖2,將圖1中的△ABC繞點A順時針旋轉角α0α360°),

1)中的結論是否成立?若成立,請利用圖2證明;若不成立,請說明理由;

AC=ED時,探究在△ABC旋轉的過程中,是否存在這樣的角α,使以A、B、CD四點為頂點的四邊形是平行四邊形?若存在,請直接寫出角α的度數;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,中,,,點,分別在邊,上,將沿直線折疊,點恰好落在邊上的點處,且

1)求的長;

2)點是射線上的一個動點,連接,,,的面積與的面積相等,

①當點在線段上時,求的長;

②當點在線段的延長線上時,________;

3)將直線平移,平移后的直線與直線,直線分別交于點和點,以線段為一邊作正方形,點與點在直線兩側,連接時,請直接寫出的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD內部有若干個點,則用這些點以及正方形ABCD的頂點A、B、C、D把原正方形分割成一些三角形(互相不重疊):

1)填寫下表:

正方形ABCD內點的個數

1

2

3

4

...

n

分割成三角形的個數

4

6

_____

_____

...

_____

2)原正方形能否被分割成2021個三角形?若能,求此時正方形ABCD內部有多少個點?若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某路燈在鉛垂面內的示意圖,燈柱AB的高為13米,燈桿BC與燈柱AB的夾角∠B120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長為20米,已知tanCDE,tanCED,求燈桿BC的長度.

查看答案和解析>>

同步練習冊答案