如圖1,在四邊形ABCD中,AB∥CD,延長(zhǎng)AB到E,使BE=DC,連接CE,AC=CE.
(1)求證:AD=BC;
(2)在上述條件下,如圖2,延長(zhǎng)AD、EC交于點(diǎn)G,若將AE翻折,點(diǎn)E與點(diǎn)G剛好重合,折痕為AF,且GC:CE=3:5,AE=2
10
,求AF的長(zhǎng).
分析:(1)得出平行四邊形DCEB,推出BD=CE=AC,根據(jù)等腰梯形的判定推出即可.
(2)過(guò)C點(diǎn)作CH⊥AE于點(diǎn)H,根據(jù)平行線分線段定理(或相似三角形的性質(zhì)和判定)求出DC、AB、CH長(zhǎng),求出GE,根據(jù)等腰三角形性質(zhì)求出GF,根據(jù)勾股定理求出即可.
解答:(1)證明:∵AB∥CD,
∴DC∥BE,
∵DC=BE,
∴四邊形DCEB是平行四邊形,
∴CE=BD,
∵AC=CE,
∴AC=BD,
∵四邊形ABCD是梯形,
∴四邊形ABCD是等腰梯形,
∴AD=BC.
(2)解:
由點(diǎn)E與點(diǎn)G剛好重合,折痕為AF可知,三角形GAE為等腰三角形,且AG=AE,AF是三角形GAE的高線,
過(guò)C點(diǎn)作CH⊥AE于點(diǎn)H,
∵GC:CE=3:5,DC∥AB,
∴△GDC∽△GAE
GD
DA
=
3
5
,
又∵四邊形DCEB是平行四邊形,
∴BD∥CE,
∴△ADB∽△AGE,
BE
AB
=
DG
AD
=
3
5
,
∵AE=2
10
,
∴AB=
5
4
10
,DC=BE=
3
4
10
,
∵四邊形ABCD是梯形,
∴BH=
1
2
( AB-CD)=
1
4
10
,BC=AD=AB=
5
4
10
,
∴在Rt△BCH中,由勾股定理得:CH=4
15

∴EH=BE+BH=
10

∴在Rt△CEH中,由勾股定理得:CE=5,
∴CG=3,
在Rt△AFG中,由勾股定理得:AF=
(2
10
)2-42
=2
6
點(diǎn)評(píng):本題考查了等腰梯形的判定,相似三角形的性質(zhì)和判定,勾股定理,等腰三角形的性質(zhì)和判定的應(yīng)用,題目綜合性比較強(qiáng),難度偏大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)已知:如圖1,在四邊形ABCD中,E是AD上一點(diǎn),EC∥AB,EB∥CD,若S△DEC=1,S△ABE=3,則S△BCE=
 
;若S△DEC=S1,S△ABE=S2,S△BCE=S,請(qǐng)直接寫出S與S1、S2間的關(guān)系式:
 

(2)如圖2,△ABC、△DCE、△GEF都是等邊三角形,且A、D、G在同一直線上,B、C、E、F也在同一直線上,S△ABC=4,S△DCE=9,試?yán)茫?)中的結(jié)論得△GEF的面積為
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們把既有外接圓又有內(nèi)切圓的四邊形稱為雙圓四邊形,如圖1,四邊形ABCD是雙圓四邊形,其外心為O1,內(nèi)心為O2
(1)在平行四邊形、矩形、菱形、正方形、等腰梯形中,雙圓四邊形有
 
個(gè);
(2)如圖2,在四邊形ABCD中,已知:∠B=∠D=90°,AB=AD,問(wèn):這個(gè)四邊形是否是雙圓四邊形?如果是,請(qǐng)給出證明;如果不是,請(qǐng)說(shuō)明理由;
(3)如圖3,如果雙圓四邊形ABCD的外心與內(nèi)心重合于點(diǎn)O,試判定這個(gè)四邊形的形狀,并說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•黑河)如圖1,在正方形ABCD中,點(diǎn)M、N分別在AD、CD上,若∠MBN=45°,易證MN=AM+CN
(1)如圖2,在梯形ABCD中,BC∥AD,AB=BC=CD,點(diǎn)M、N分別在AD、CD上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN有怎樣的數(shù)量關(guān)系?請(qǐng)寫出猜想,并給予證明.
(2)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點(diǎn)M、N分別在DA、CD的延長(zhǎng)線上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2013•咸寧)閱讀理解:
如圖1,在四邊形ABCD的邊AB上任取一點(diǎn)E(點(diǎn)E不與點(diǎn)A、點(diǎn)B重合),分別連接ED,EC,可以把四邊形ABCD分成三個(gè)三角形,如果其中有兩個(gè)三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點(diǎn);如果這三個(gè)三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強(qiáng)相似點(diǎn).解決問(wèn)題:
(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點(diǎn)E是否是四邊形ABCD的邊AB上的相似點(diǎn),并說(shuō)明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點(diǎn)均在正方形網(wǎng)格(網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1)的格點(diǎn)(即每個(gè)小正方形的頂點(diǎn))上,試在圖2中畫出矩形ABCD的邊AB上的一個(gè)強(qiáng)相似點(diǎn)E;
拓展探究:
(3)如圖3,將矩形ABCD沿CM折疊,使點(diǎn)D落在AB邊上的點(diǎn)E處.若點(diǎn)E恰好是四邊形ABCM的邊AB上的一個(gè)強(qiáng)相似點(diǎn),試探究AB和BC的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•東臺(tái)市二模)在四邊形ABCD中,AC=AB,DC=DB,∠CAB=60°,∠CDB=120°,E是AC上一點(diǎn),F(xiàn)是AB延長(zhǎng)線上一點(diǎn),且CE=BF.

思考驗(yàn)證:
(1)求證:DE=DF;
(2)在圖1中,若G在AB上且∠EDG=60°,試猜想CE、EG、BG之間的數(shù)量關(guān)系并證明;
歸納結(jié)論:
(3)若題中條件“∠CAB=60°且∠CDB=120°”改為∠CAB=α,∠CDB=180°-α,G在AB上,∠EDG滿足什么條件時(shí),(2)中結(jié)論仍然成立?(只寫結(jié)果不要證明)
探究應(yīng)用:
(4)運(yùn)用(1)(2)(3)解答中所積累的經(jīng)驗(yàn)和知識(shí),完成下題:如圖2,在四邊形ABCD中,∠ABC=90°,∠CAB=∠CAD=30°,E在AB上,DE⊥AB,且∠DCE=60°,若AE=3,求BE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案