已知菱形ABCD的對(duì)角線AC=2
7
+4
,BD=2
7
-4
,求菱形的邊長(zhǎng)和面積.

∵菱形對(duì)角線互相垂直平分,
∴△ABO為直角三角形.
在Rt△ABO中,
AB2=AO2+BO2=(
2
7
+4
2
)2+(
2
7
-4
2
)2=22
,
∴菱形的邊長(zhǎng)=
22

菱形的面積=
1
2
×(2
7
+4)(2
7
-4)=6
,
答:菱形的邊長(zhǎng)為
22
,面積為 6.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

墻上釘著一根彩繩圍成的梯形形狀的飾物,如圖中所示的實(shí)線部分,小英將圖中梯形下底的兩個(gè)釘子拿掉,并將這根彩繩釘成一個(gè)長(zhǎng)方形,如圖中所示的虛線部分,求小英所釘成的長(zhǎng)方形的長(zhǎng)以及長(zhǎng)方形的面積分別是多少?(相關(guān)數(shù)據(jù)如圖中所示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

長(zhǎng)方形ABCD中,AB=8,對(duì)角線AC=10,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:在菱形ABCD中,∠BAD=60°,把它放在直角坐標(biāo)系中,使AD邊在y軸上,點(diǎn)C的坐標(biāo)為(2
3
,8

(1)畫出符合題目條件的菱形與直角坐標(biāo)系.
(2)寫出A,B兩點(diǎn)的坐標(biāo).
(3)設(shè)菱形ABCD的對(duì)角線的交點(diǎn)為P,問(wèn):在y軸上是否存在一點(diǎn)F,使得點(diǎn)P與點(diǎn)F關(guān)于菱形ABCD的某條邊所在的直線對(duì)稱,如果存在,寫出點(diǎn)F的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA上的一點(diǎn),且
AE
EB
=
BF
FC
=
AH
HD
=
DG
GC
=k(k>0).閱讀下段材料,回答下列問(wèn)題:
如圖,連接BD,∵
AE
EB
=
AH
HD
,∴EHBD,∵
BF
FC
=
DG
GC
,∴FGBD,∴FGEH.
(1)連接AC,則EF與GH是否一定平行,答:______;
(2)當(dāng)k值為______時(shí),四邊形EFGH為平行四邊形;
(3)在(2)的情形下,對(duì)角線AC與BD只須滿足______條件時(shí),EFGH為矩形;
(4)在(2)的情形下,對(duì)角線AC與BD只須滿足______條件時(shí),EFGH為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC=
5
.對(duì)角線AC,BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交BC,AD于點(diǎn)E,F(xiàn).
(1)證明:當(dāng)旋轉(zhuǎn)角為90°時(shí),四邊形ABEF是平行四邊形;
(2)試說(shuō)明在旋轉(zhuǎn)過(guò)程中,線段AF與EC總保持相等;
(3)在旋轉(zhuǎn)過(guò)程中,四邊形BEDF可能是菱形嗎?如果不能,請(qǐng)說(shuō)明理由;如果能,說(shuō)明理由并求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

菱形ABCD中,若周長(zhǎng)是20cm,對(duì)角線AC=6cm,則對(duì)角線BD=______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,過(guò)矩形ABCD的四個(gè)頂點(diǎn)作對(duì)角線AC、BD的平行線,分別相交于E、F、G、H四點(diǎn),則四邊形EFGH為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,矩形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,DEAC,CEBD,若AC=4,則四邊形CODE的周長(zhǎng)為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案