【題目】如圖,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y=的圖象相交于點(diǎn)A(﹣1,4)和點(diǎn)B(4,n).
(1)求這兩個函數(shù)的解析式;
(2)已知點(diǎn)M在線段AB上,連接OA,OB,OM,若S△AOM=S△BOM,求點(diǎn)M的坐標(biāo).
【答案】(1)y=﹣,y=﹣x+3;(2)點(diǎn)M的坐標(biāo)為(,)
【解析】
(1)先把A點(diǎn)坐標(biāo)代入y=中求出得k2得到反比例函數(shù)解析式,再利用反比例函數(shù)解析式確定B點(diǎn)坐標(biāo),然后利用待定系數(shù)法求一次函數(shù)解析式;
(2)設(shè)M(t,﹣t+3)(﹣1<t<4),利用三角形面積公式得到AM=BM,根據(jù)兩點(diǎn)間的距離公式得到(t+1)2+(﹣t+3﹣4)2= [(t﹣4)2+(﹣t+3+1)2],然后解方程求出,從而得到點(diǎn)M的坐標(biāo).
解:(1)把A(﹣1,4)代入y=得k2=﹣1×4=﹣4,
∴反比例函數(shù)解析式為y=﹣,
把B(4,n)代入y=﹣,得4n=﹣4,
解得:n=﹣1,則B(4,﹣1),
把A(﹣1,4)和B(4,﹣1)代入y=k1x+b得
,解得,
∴一次函數(shù)解析式為y=﹣x+3;
(2)設(shè)M(t,﹣t+3)(﹣1<t<4),
∵S△AOM=S△BOM,
∴AM=BM,
∴(t+1)2+(﹣t+3﹣4)2= [(t﹣4)2+(﹣t+3+1)2],
整理得(t﹣4)2=4(t+1)2,
解得:t1=,t2=﹣6(舍去),
∴點(diǎn)M的坐標(biāo)為(,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小昕的口袋中有5把相似的鑰匙,其中2把鑰匙(記為A1,A2)能打開教室前門鎖,而剩余的3把鑰匙(記為B1,B2,B3)不能打開教室前門鎖.
(1)小昕從口袋中隨便摸出一把鑰匙就能打開教室前門鎖的概率是 ;
(2)請用樹狀圖或列表等方法,求出小昕從口袋中第一次隨機(jī)摸出的一把鑰匙不能打開教室前門鎖(摸出的鑰匙不再放回),而第二次隨機(jī)摸出的一把鑰匙正好能打開教室前門鎖的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的對角線OB,AC相交于點(diǎn)D,OA=3,OC=2,且BE∥AC,AE∥OB.
(1)求證:四邊形AEBD是菱形;
(2)求經(jīng)過點(diǎn)E的雙曲線對應(yīng)的函數(shù)解析式;
(3)設(shè)經(jīng)過點(diǎn)E的雙曲線與直線BE的另一交點(diǎn)為F,過點(diǎn)F作x軸的平行線,交經(jīng)過點(diǎn)B的雙曲線于點(diǎn)G,交y軸于點(diǎn)H,求△OFG的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A在∠MON的邊ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.
(1)求證:四邊形ABCD是矩形;
(2)若DE=3,OE=9,求AB、AD的長;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場在五四青年節(jié)來臨之際用2400元購進(jìn)A,B兩種運(yùn)動衫共22件.已知購買A種運(yùn)動衫與購買B種運(yùn)動衫的費(fèi)用相同,A種運(yùn)動衫的單價是B種運(yùn)動衫單價的1.2倍.
(1)求A,B兩種運(yùn)動衫的單價各是多少元?
(2)若計(jì)劃用不超過5600元的資金再次購進(jìn)A,B兩種運(yùn)動衫共50件,已知A,B兩種運(yùn)動衫的進(jìn)價不變.求A種運(yùn)動衫最多能購進(jìn)多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,共享單車服務(wù)的推出(如圖1),極大的方便了城市公民綠色出行,圖2是某品牌某型號單車的車架新投放時的示意圖(車輪半徑約為30cm),其中BC∥直線l,∠BCE=71°,CE=54cm.
(1)求單車車座E到地面的高度;(結(jié)果精確到1cm)
(2)根據(jù)經(jīng)驗(yàn),當(dāng)車座E到CB的距離調(diào)整至等于人體胯高(腿長)的0.85時,坐騎比較舒適.小明的胯高為70cm,現(xiàn)將車座E調(diào)整至座椅舒適高度位置E′,求EE′的長.(結(jié)果精確到0.1cm)
(參考數(shù)據(jù):sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結(jié)論:①b<2a;②a+2c﹣b>0;③b>a>c;④b2+2ac<3ab.其中正確結(jié)論的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,于,且.點(diǎn)從點(diǎn)出發(fā),沿方向勻速運(yùn)動,速度為;同時直線由點(diǎn)出發(fā)沿方向勻速運(yùn)動,速度為,運(yùn)動過程中始終保持,直線交于,交于,連接,設(shè)運(yùn)動時間為.
(1)___________,__________,_____________;(用含的式子表示)
(2)當(dāng)四邊形是平行四邊形時,求的值;
(3)當(dāng)點(diǎn)在線段的垂直平分線上時,求的值;
(4)是否存在時刻,使以為直徑的圓與的邊相切?若存在,直接寫出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一臺實(shí)物投影儀,圖2是它的示意圖,折線O﹣A﹣B﹣C表示支架,支架的一部分O﹣A﹣B是固定的,另一部分BC是可旋轉(zhuǎn)的,線段CD表示投影探頭,OM表示水平桌面,AO⊥OM,垂足為點(diǎn)O,且AO=7cm,∠BAO=160°,BC∥OM,CD=8cm.
將圖2中的BC繞點(diǎn)B向下旋轉(zhuǎn)45°,使得BCD落在BC′D′的位置(如圖3所示),此時C′D′⊥OM,AD′∥OM,AD′=16cm,求點(diǎn)B到水平桌面OM的距離,(參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,cot70°≈0.36,結(jié)果精確到1cm)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com