如圖,一次函數(shù)y1=kx+b的圖象與二次函數(shù)y2=ax2的圖象交于A(-1,1.5)和B(2,6)兩點,則當y1>y2時,x的取值范圍是


  1. A.
    x<-1
  2. B.
    x>2
  3. C.
    -1<x<2
  4. D.
    x<-1或x>2
C
分析:關鍵是從圖象上找出兩函數(shù)圖象交點坐標,再根據(jù)兩函數(shù)圖象的上下位置關系,判斷y1>y2時,x的范圍.
解答:已知函數(shù)圖象的兩個交點坐標分別為(-1,1.5),(2,6),
∴當有y1>y2時,有-1<x<2.故選C.
點評:此外此題還可用數(shù)形結(jié)合的思想進行解答,由圖形可以看出當y1>y2時,x的取值范圍正好在A(-1,1.5)和B(2,6)兩點之間,即-1<x<2.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=
m
x
的圖象交于A、B兩點,點A、B的橫坐標分別為-2、1.當y1>y2時,自變量x的取值范圍是( 。
A、-2<x<1
B、0<x<1
C、x<-2和0<x<1
D、-2<x<1和x>1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=
mx
 
(m≠0)
的圖象交于二、四象限內(nèi)的A、B兩點,過A作AC⊥x軸于點C,連接OA、OB、BC.已知OC=4,tan∠OAC=2,點B的縱坐標為-6.
(1)求反比例函數(shù)和直線AB的解析式;
(2)求四邊形OACB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=
mx
的圖象相交于A、B兩點,試利用圖中條件,求y1和y2的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,一次函數(shù)y1=kx+1(k≠0)與反比例函數(shù)y2=
mx
(m≠0)的圖象有公共點A(1,2).直線l⊥x軸于點N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點B,C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積?
(3)當y1>y2時,請直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,一次函數(shù)y1=kx+b與反比例函數(shù)y2=-
6x
交于點A(m,6)、B(3,n).
(1)求一次函數(shù)的關系式;
(2)求△AOB的面積;
(3)直接寫出y1>y2時x的取值范圍.

查看答案和解析>>

同步練習冊答案