【題目】在矩形ABCD中,將點(diǎn)A翻折到對(duì)角線BD上的點(diǎn)M處,折痕BEAD于點(diǎn)E.將點(diǎn)C翻折到對(duì)角線BD上的點(diǎn)N處,折痕DFBC于點(diǎn)F

1)求證:四邊形BFDE為平行四邊形;

2)若四邊形BFDE為菱形,且AB2,求BC的長(zhǎng).

【答案】1)證△ABE≌△CDF,推出AE=CF,求出DE=BF,DE∥BF,根據(jù)平行四邊形判定推出即可.

2

【解析】

1)證△ABE≌△CDF,推出AE=CF,求出DE=BF,DE∥BF,根據(jù)平行四邊形判定推出即可.

2)求出∠ABE=30°,根據(jù)直角三角形性質(zhì)求出AEBE,即可求出答案.

解:(1)證明:四邊形ABCD是矩形,∴∠A=∠C=90°AB=CD,AB∥CD∴∠ABD=∠CDB

在矩形ABCD中,將點(diǎn)A翻折到對(duì)角線BD上的點(diǎn)M處,折痕BEAD于點(diǎn)E.將點(diǎn)C翻折到對(duì)角線BD上的點(diǎn)N處,

∴∠ABE=∠EBD=∠ABD∠CDF=∠CDB∴∠ABE=∠CDF

△ABE△CDF中,,

∴△ABE≌△CDFASA).∴AE=CF

四邊形ABCD是矩形,∴AD=BCAD∥BC

∴DE=BF,DE∥BF四邊形BFDE為平行四邊形.

2四邊形BFDE為為菱形,∴BE=ED,∠EBD=∠FBD=∠ABE

四邊形ABCD是矩形,∴AD=BC∠ABC=90°∴∠ABE=30°

∵∠A=90°,AB=2,

∴BC=AD=AE+ED=AE+BE=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,直線a經(jīng)過(guò)正方形ABCD的頂點(diǎn)A,分別過(guò)正方形的頂點(diǎn)B、DBFa于點(diǎn)FDEa于點(diǎn)E,若DE8,BF5,則EF的長(zhǎng)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示.在△ABC中,AB=AC=10cmBC=8cm,點(diǎn)DAB的中點(diǎn),如果點(diǎn)P在線段BC上以3cms的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).

1)若點(diǎn)Q與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1s后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由.

2)若點(diǎn)Q與點(diǎn)P的運(yùn)動(dòng)速度不同,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度是多少時(shí)能使△BPD與△CQP全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy(如圖)中,已知拋物線y=+bx+c點(diǎn)經(jīng)過(guò)A1,0)、B0,2).

1)求該拋物線的表達(dá)式;

2)設(shè)該拋物線的對(duì)稱軸與x軸的交點(diǎn)為C,第四象限內(nèi)的點(diǎn)D在該拋物線的對(duì)稱軸上,如果以點(diǎn)AC、D所組成的三角形與AOB相似,求點(diǎn)D的坐標(biāo);

3)設(shè)點(diǎn)E在該拋物線的對(duì)稱軸上,它的縱坐標(biāo)是1,聯(lián)結(jié)AEBE,求sinABE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB,C三點(diǎn)在O直徑BD平分∠ABC,過(guò)點(diǎn)DDEAB交弦BC于點(diǎn)EBC的延長(zhǎng)線上取一點(diǎn)F,使得EFDE

1)求證DF是⊙O的切線

2)連接AFDE于點(diǎn)M, AD4,DE5,DM的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線ABCD相交于點(diǎn)E,射線EG在∠AEC內(nèi)(如圖1).

1)若∠BEC的補(bǔ)角是它的余角的3倍,則∠BEC   °;

2)在(1)的條件下,若∠CEG比∠AEG25度,求∠AEG的大;

3)若射線EF平分∠AED,∠FEGm°m90°)(如圖2),則∠AEG﹣∠CEG   °(用m的代表式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,B90°,AB4,BC2AC為邊作△ACE,ACE90°AC=CE,延長(zhǎng)BC至點(diǎn)D,使CD5連接DE.求證ABC∽△CED

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義運(yùn)算:ab=a(1b).若a,b是方程x2x+m=0(m0)的兩根,則bbaa的值為

A. 0 B. 1 C. 2 D. m有關(guān)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,M、N分別在ADBC上,且AM=CN,連接MNAC交于點(diǎn)O,連接BO,若∠DAC=28°,則∠OBC的度數(shù)為( )

A.28°B.56°C.62°D.72°

查看答案和解析>>

同步練習(xí)冊(cè)答案