【題目】如圖,在三角形ABC中,AC=4 cm,BC=3 cm,將三角形ABC沿AB方向向右平移得到三角形DEF,若AE=8 cm,DB=2 cm.
(1)求三角形ABC向右平移的距離AD的長;
(2)求四邊形AEFC的周長.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
在數(shù)軸上2與﹣1所對的兩點之間的距離:|2﹣(﹣1)|=3;
在數(shù)軸上﹣2與3所對的兩點之間的距離:|﹣2﹣3|=5;
在數(shù)軸上﹣3與﹣1所對的兩點之間的距離:|(﹣1)﹣(﹣3)|=2
歸納:在數(shù)軸上點A、B分別表示數(shù)a、b,則A、B兩點之間的距離AB=|a﹣b|或|b﹣a|
回答下列問題:
(1) 數(shù)軸上表示數(shù)x和1的兩點之間的距離表示為 ;數(shù)軸上表示數(shù)x和 的兩點之間的距離表示為|x+2|;
(2)請你在草稿紙上畫出數(shù)軸,當表示數(shù)x的點在﹣2與3之間移動時,|x﹣3|+|x+2|的值總是一個固定的值為: .
(3)繼續(xù)請你在草稿紙上畫出數(shù)軸,探究當x=_______時,|x-3|+|x+2|=7.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為2的菱形ABCD中,∠A=60°,M是AD邊的中點,N是AB邊上的一動點,將△AMN沿MN所在直線翻折得到△A′MN,連接A′C,則A′C長度的最小值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)過點(1,0)和點(0,﹣2),且頂點在第三象限,設(shè)P=a﹣b+c,則P的取值范圍是( )
A.﹣4<P<0
B.﹣4<P<﹣2
C.﹣2<P<0
D.﹣1<P<0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知射線 DM與直線AB交于點A,線段EC與直線AB交于點C,AB∥DE.
(1)當∠MAC=100°,∠BCE=120°時,把EC繞點E旋轉(zhuǎn)多大角度(所求角度小于180°)時,可判定MD∥EC?請你設(shè)計出兩種方案,并畫出草圖;
(2)若將EC繞點E逆時針旋轉(zhuǎn)60°時,點C與點A恰好重合,請畫出草圖,并在圖中找出同位角、內(nèi)錯角各兩對(先用數(shù)字標出角,再回答).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①所示,已知MN∥PQ,點B在MN上,點C在PQ上,點A在點B的左側(cè),點D在點C的右側(cè),∠ADC,∠ABC的平分線相交于點E(不與B,D點重合),∠CBN=110°.
(1)若∠ADQ=140°,寫出∠BED的度數(shù) (直接寫出結(jié)果即可);
(2)若∠ADQ=m°,將線段AD沿DC方向平移,使點D移動到點C的左側(cè),其他條件不變,如圖②所示,求∠BED的度數(shù)(用含m的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:如圖1,在△ABC和△ADE中,AB=AC=AD=AE,當∠BAC+∠DAE=180° 時,我們稱△ABC與△DAE互為“頂補等腰三角形”,△ABC的邊BC上的高線AM叫做△ADE的“頂心距”,點A叫做“旋補中心”.
(1)特例感知:在圖2,圖3中,△ABC與△DAE互為“頂補等腰三角形”,AM是“頂心距”。
①如圖2,當∠BAC=90°時,AM與DE之間的數(shù)量關(guān)系為AM= DE;
②如圖3,當∠BAC=120°,ED=6時,AM的長為 。
(2)猜想論證:
在圖1中,當∠BAC為任意角時,猜想AM與DE之間的數(shù)量關(guān)系,并給予證明。
(3)拓展應用
如圖4,在四邊形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,CA=,在四邊ABCD的內(nèi)部找到點P,使得△PAD與△PBC互為“頂補等腰三角形”。并回答下列問題。
①請在圖中標出點P的位置,并描述出該點的位置為 ;
②直接寫出△PBC的“頂心距”的長為 。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將從1開始的連續(xù)自然數(shù)按圖規(guī)律排列:規(guī)定位于第3行,第2列的自然數(shù)10記為(3,2),自然數(shù)15記為(4,2)…….
按此規(guī)律,回答下列問題:
(1)記為(6,3)表示的自然數(shù)是___________;
(2)自然數(shù)2018記為 __________;
(3)用一個正方形方框在第3列和第4列中任意框四個數(shù),這四個數(shù)的和能為2018嗎?如果能,求出框出的四個數(shù)中最小的數(shù);如果不能,請寫出理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC 中,點 D、E 分別在邊 BC、AC 上,且 AE=CD,BE 與 AD 相交于點 P,BQ⊥AD 于點 Q.
(1)求證:BE=AD;
(2)若 PQ=4,求 BP 的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com