【題目】如圖,把長(zhǎng)方形紙片ABCD沿對(duì)角線折疊,設(shè)重疊部分為△EBD,那么下列說法:①是等腰三角形,;②折疊后一定相等;③折疊后得到的圖形是軸對(duì)稱圖形;④一定是全等三角形.正確的是______(填序號(hào)).

【答案】①③④.

【解析】

根據(jù)矩形的性質(zhì)得到∠BAE=DCE,AB=CD,再由對(duì)頂角相等可得∠AEB=CED,推出AEB≌△CED,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論,依此可得①③④正確;無法判斷∠ABE和∠CBD是否相等.

∵四邊形ABCD為矩形,
∴∠BAE=DCE,AB=CD
AEBCED中,
∴△AEB≌△CEDAAS),
BE=DE
∴△EBD為等腰三角形,
∴折疊后得到的圖形是軸對(duì)稱圖形,
無法判斷∠ABE和∠CBD是否相等.
故其中正確的是①③④.
故答案為:①③④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+的圖象與反比例函數(shù)y=(k>0)的圖象交于A,B兩點(diǎn),過A點(diǎn)作x軸的垂線,垂足為M,AOM面積為1.

(1)求反比例函數(shù)的解析式;

(2)在y軸上求一點(diǎn)P,使PA+PB的值最小,并求出其最小值和P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為80海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東45°方向的B處,求此時(shí)輪船所在的B處與燈塔P的距離.(參考數(shù)據(jù):≈2.449,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課本中有一道作業(yè)題:有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB,AC上.

(1)加工成的正方形零件的邊長(zhǎng)是多少mm?

(2)如果原題中要加工的零件是一個(gè)矩形,且此矩形是由兩個(gè)并排放置的正方形所組成,如圖1,此時(shí),這個(gè)矩形零件的兩條邊長(zhǎng)又分別為多少?請(qǐng)你計(jì)算.

(3)如果原題中所要加工的零件只是一個(gè)矩形,如圖2,這樣,此矩形零件的兩條邊長(zhǎng)就不能確定,但這個(gè)矩形面積有最大值,求達(dá)到這個(gè)最大值時(shí)矩形零件的兩條邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠BOC,∠AOC100°,將△BOC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)60°得到△BDA,連接OD.

(1) 求證:△BOD是等邊三角形.

(2) 當(dāng)150°時(shí),試判斷△AOD的形狀,并說明理由.

(3) 若△AOD是等腰三角形,請(qǐng)你直接寫出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠ACB=∠DBC,添加以下條件,不能判定△ABC≌△DCB的是( 。

A.ABC=∠DCBB.ABD=∠DCA

C.ACDBD.ABDC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線軸兩個(gè)交點(diǎn)間的距離為2,稱此拋物線為定弦拋物線,已知某定弦拋物線的對(duì)稱軸為直線,將此拋物線向左平移2個(gè)單位,再向下平移3個(gè)單位,得到的拋物線過點(diǎn)( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=3,AD=2,點(diǎn)E是射線DA上一點(diǎn),連接EB,以點(diǎn)E為圓心EB長(zhǎng)為半徑畫弧,交射線CB于點(diǎn)F,作射線FECD延長(zhǎng)線交于點(diǎn)G

1)如圖1,若DE=5,則∠DEG=______°;

2)若∠BEF=60°,請(qǐng)?jiān)趫D2中補(bǔ)全圖形,并求EG的長(zhǎng);

3)若以E,FB,D為頂點(diǎn)的四邊形是平行四邊形,此時(shí)EG的長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知二次函數(shù)y=ax2+x+c(a≠0)的圖象與y軸交于點(diǎn)A(0,4),與x軸交于點(diǎn)B、C,點(diǎn)C坐標(biāo)為(8,0),連接AB、AC.

(1)請(qǐng)直接寫出二次函數(shù)y=ax2+x+c的表達(dá)式;

(2)判斷ABC的形狀,并說明理由;

(3)若點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)以點(diǎn)A、N、C為頂點(diǎn)的三角形是等腰三角形時(shí),請(qǐng)寫出此時(shí)點(diǎn)N的坐標(biāo);

(4)如圖2,若點(diǎn)N在線段BC上運(yùn)動(dòng)(不與點(diǎn)B、C重合),過點(diǎn)N作NMAC,交AB于點(diǎn)M,當(dāng)AMN面積最大時(shí),求此時(shí)點(diǎn)N的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案