觀察算式:1×3+1=4=22;2×4+1=9=32;3×5+1="16=" 42;4×6+1=25=52,……
(1)請(qǐng)根據(jù)你發(fā)現(xiàn)的規(guī)律填空:6×8+1=        ;
(2)用含n的等式表示上面的規(guī)律:                            ;
(3)用找到的規(guī)律解決下面的問題:
計(jì)算:(1+)(1+)(1+)(1+)…(1+

(1)7;(2);(3)

解析試題分析:(1)(2)仔細(xì)分析題中所給式子的特征即可得到結(jié)果;
(3)先通分,再把發(fā)現(xiàn)的規(guī)律應(yīng)用于計(jì)算即可.
(1)6×8+1=72; 
(2)用含n的等式表示上面的規(guī)律:
(3)原式

.
考點(diǎn):找規(guī)律-式子的變化
點(diǎn)評(píng):解答此類問題的關(guān)鍵是仔細(xì)分析所給式子的特征找到規(guī)律,再把這個(gè)規(guī)律應(yīng)用于解題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

觀察算式:
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,并以此規(guī)律計(jì)算:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2007×2008

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察算式:
1
1×2
=1-
1
2
=
1
2

1
1×2
+
1
2×3
=1-
1
2
+
1
2
-
1
3
=
2
3

1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4

(1)按規(guī)律填空
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
 

1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=
 

(2)若n為正整數(shù),化簡(jiǎn):
1
n(n+1)
+
1
(n+1)(n+2)
+
1
(n+2)(n+3)
+
1
(n+3)(n+4)
+…+
1
(n+99)(n+100)
,并寫出求解過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察算式:
1
1×2
=1
-
1
2
=
1
2

1
1×2
+
1
2×3
=1
-
1
2
+
1
2
-
1
3
=
2
3
,
1
1×2
+
1
2×3
+
1
3×4
=1
-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4


(1)按規(guī)律填空:
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=
4
5
4
5
;
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=
99
100
99
100

③如果n為正整數(shù),那么
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
n×(n+1)
=
n
n+1
n
n+1

(2)計(jì)算(由此拓展寫出具體過程):
1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101
;
②1-
1
2
-
1
6
-
1
12
-…-
1
9900

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察算式:
1
1×2
=1-
1
2
=
1
2

1
1×2
+
1
2×3
=1-
1
2
+
1
2
-
1
3
=
2
3

1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4

按規(guī)律填空 
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=
4
5
4
5

1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
5
6
5
6

1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=
99
100
99
100

若n為正整數(shù),試求:
1
n(n+1)
+
1
(n+1)(n+2)
+
1
(n+2)(n+3)
+
1
(n+3)(n+4)
+…+
1
(n+99)(n+100)
的值,并寫出求值過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察算式:
1
1×2
=1-
1
2
=
1
2
,
1
1×2
+
1
2×3
=1-
1
2
+
1
2
-
1
3
=
2
3

1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4

按規(guī)律填空
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=
4
5
4
5

1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=
99
100
99
100
;
如果n為正整數(shù),那么
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
n(n+1)
=
n
n+1
n
n+1

由此拓展寫出具體過程,
1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101

查看答案和解析>>

同步練習(xí)冊(cè)答案