【題目】如今很多初中生喜歡購(gòu)頭飲品飲用,既影響身體健康又給家庭增加不必要的開(kāi)銷(xiāo),為此某班數(shù)學(xué)興趣小組對(duì)本班同學(xué)一天飲用飲品的情況進(jìn)行了調(diào)查,大致可分為四種:A.白開(kāi)水,B.瓶裝礦泉水,C.碳酸飲料,D.非碳酸飲料.根據(jù)統(tǒng)計(jì)結(jié)果繪制如下兩個(gè)統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題

1)這個(gè)班級(jí)有多少名同學(xué)?并補(bǔ)全條形統(tǒng)計(jì)圖;

2)若該班同學(xué)每人每天只飲用一種飲品(每種僅限一瓶,價(jià)格如下表),則該班同學(xué)每天用于飲品的人均花費(fèi)是多少元?

飲品名稱(chēng)

白開(kāi)水

瓶裝礦泉水

碳酸飲料

非碳酸飲料

平均價(jià)格(元/瓶)

0

2

3

4

3)為了養(yǎng)成良好的生活習(xí)慣,班主任決定在飲用白開(kāi)水的5名班委干部(其中有兩位班長(zhǎng)記為A,B,其余三位記為C,DE)中隨機(jī)抽取2名班委干部作良好習(xí)慣監(jiān)督員,請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法求出恰好抽到2名班長(zhǎng)的概率.

【答案】1)這個(gè)班級(jí)的學(xué)生人數(shù)為50人,補(bǔ)全圖形見(jiàn)解析;(2)該班同學(xué)每天用于飲品的人均花費(fèi)是2.2元;(3)恰好抽到2名班長(zhǎng)的概率為

【解析】

1)由B飲品的人數(shù)及其所占百分比可得總?cè)藬?shù),再根據(jù)各飲品的人數(shù)之和等于總?cè)藬?shù)求出C的人數(shù)即可補(bǔ)全圖形;

2)根據(jù)加權(quán)平均數(shù)的定義計(jì)算可得;

3)畫(huà)樹(shù)狀圖得出所有等可能結(jié)果,從中找到符合條件的結(jié)果,再根據(jù)概率公式計(jì)算可得.

1)這個(gè)班級(jí)的學(xué)生人數(shù)為(人),

選擇C飲品的人數(shù)為(人),

補(bǔ)全圖形如下:

2(元),

答:該班同學(xué)每天用于飲品的人均花費(fèi)是2.2元;

3)畫(huà)樹(shù)狀圖如下:

由樹(shù)狀圖知共有20種等可能結(jié)果,其中恰好抽到2名班長(zhǎng)的有2種結(jié)果,

所以恰好抽到2名班長(zhǎng)的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)A的坐標(biāo)為,頂點(diǎn)Cx軸的正半軸上,則的角平分線(xiàn)所在直線(xiàn)的函數(shù)關(guān)系式為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將直線(xiàn)y=﹣3x向上平移3個(gè)單位,與y軸、x軸分別交于點(diǎn)A、B,以線(xiàn)段AB為斜邊在第一象限內(nèi)作等腰直角三角形ABC.若反比例函數(shù)yx0)的圖象經(jīng)過(guò)點(diǎn)C,求此反比例函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是一塊含30°(即∠CAB30°)角的三角板和一個(gè)量角器拼在一起,三角板斜邊AB與量角器所在圓的直徑MN恰好重合,其量角器最外緣的讀數(shù)是從N點(diǎn)開(kāi)始(即N點(diǎn)的讀數(shù)為0°),現(xiàn)有射線(xiàn)CP繞點(diǎn)CCA的位置開(kāi)始按順時(shí)針?lè)较蛞悦棵?/span>2度的速度旋轉(zhuǎn)到CB位置,在旋轉(zhuǎn)過(guò)程中,射線(xiàn)CP與量角器的半圓弧交于E

1)當(dāng)旋轉(zhuǎn)7.5秒時(shí),連接BE,試說(shuō)明:BECE;

2)填空:①當(dāng)射線(xiàn)CP經(jīng)過(guò)ABC的外心時(shí),點(diǎn)E處的讀數(shù)是   

②當(dāng)射線(xiàn)CP經(jīng)過(guò)ABC的內(nèi)心時(shí),點(diǎn)E處的讀數(shù)是   ;

③設(shè)旋轉(zhuǎn)x秒后,E點(diǎn)出的讀數(shù)為y度,則yx的函數(shù)式是y   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是一塊含30°(即∠CAB30°)角的三角板和一個(gè)量角器拼在一起,三角板斜邊AB與量角器所在圓的直徑MN恰好重合,其量角器最外緣的讀數(shù)是從N點(diǎn)開(kāi)始(即N點(diǎn)的讀數(shù)為0°),現(xiàn)有射線(xiàn)CP繞點(diǎn)CCA的位置開(kāi)始按順時(shí)針?lè)较蛞悦棵?/span>2度的速度旋轉(zhuǎn)到CB位置,在旋轉(zhuǎn)過(guò)程中,射線(xiàn)CP與量角器的半圓弧交于E

1)當(dāng)旋轉(zhuǎn)7.5秒時(shí),連接BE,試說(shuō)明:BECE;

2)填空:①當(dāng)射線(xiàn)CP經(jīng)過(guò)ABC的外心時(shí),點(diǎn)E處的讀數(shù)是   

②當(dāng)射線(xiàn)CP經(jīng)過(guò)ABC的內(nèi)心時(shí),點(diǎn)E處的讀數(shù)是   ;

③設(shè)旋轉(zhuǎn)x秒后,E點(diǎn)出的讀數(shù)為y度,則yx的函數(shù)式是y   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐

背景閱讀:旋轉(zhuǎn)就是將圖形上的每一點(diǎn)在平面內(nèi)繞著旋轉(zhuǎn)中心旋轉(zhuǎn)固定角度的位置移動(dòng),其中是過(guò)程,轉(zhuǎn)是結(jié)果.旋轉(zhuǎn)作為圖形變換的一種,具備圖形旋轉(zhuǎn)前后對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等:對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線(xiàn)段的夾角等于旋轉(zhuǎn)角:旋轉(zhuǎn)前、后的圖形是全等圖形等性質(zhì).所以充分運(yùn)用這些性質(zhì)是在解決有關(guān)旋轉(zhuǎn)問(wèn)題的關(guān)。

實(shí)踐操作:如圖1,在RtABC中,∠B90°,BC2AB12,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),連接DE,將△EDC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為α

問(wèn)題解決:(1)①當(dāng)α時(shí),   ;②當(dāng)α180°時(shí),   

2)試判斷:當(dāng)0°≤a360°時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情形給出證明.

問(wèn)題再探:(3)當(dāng)△EDC旋轉(zhuǎn)至A,DE三點(diǎn)共線(xiàn)時(shí),求得線(xiàn)段BD的長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某核桃種植基地計(jì)劃種植、兩種優(yōu)質(zhì)核桃共30畝,已知這兩種核桃的年產(chǎn)量分別為800千克/畝、1000千克/畝,收購(gòu)價(jià)格分別是42/千克、4/千克.設(shè)該基地種植了種核桃畝.

(Ⅰ)若該基地收獲兩種核桃的年總產(chǎn)量為25 800千克,則兩種核桃各種植了多少畝?

(Ⅱ)全部收購(gòu)后,總收入為元,求出之間的函數(shù)關(guān)系式.若要求種植種核桃的面積不少于種核桃的一半,那么種植種核桃多少畝時(shí),該種植基地的總收入最多?最多是多少元?

解:(Ⅰ)先用含的代數(shù)式填空,再完成解答.

由種植了種核桃畝,可知種核桃種植的畝數(shù)為________,則種核桃的年總產(chǎn)量為________千克,種核桃的年總產(chǎn)量為________千克.

根據(jù)題意列出方程________________________

解得:

(Ⅱ)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(發(fā)現(xiàn))

如圖∠ACB=ADB=90°,那么點(diǎn)D在經(jīng)過(guò)A,B,C三點(diǎn)的圓上(如圖①).

如圖②,如果∠ACB=ADB=a(a≠90°)(點(diǎn)C,DAB的同側(cè)),那么點(diǎn)D還在經(jīng)過(guò)A,B,C三點(diǎn)的圓上嗎?請(qǐng)證明點(diǎn)D也不在⊙O內(nèi).

(應(yīng)用)

利用(發(fā)現(xiàn))和(思考)中的結(jié)論解決問(wèn)題:

(1)如圖④,已知∠BCD=BAD,CAD=40°,求∠CBD的度數(shù).

(2)如圖⑤,若四邊形ABCD中,∠CAD=90°,作∠CDF=90°,交CA延長(zhǎng)線(xiàn)于F,點(diǎn)EAB上,∠AED=ADF,CD=3,EC=2,求ED的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020210日,光明中學(xué)團(tuán)委利用網(wǎng)絡(luò)平臺(tái)組織八年級(jí)600名學(xué)生參加全民抗疫知識(shí)大賽.為了了解本次大賽的成績(jī),隨機(jī)抽取了部分學(xué)生的成績(jī)作為樣本,按,四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成如下不完整的統(tǒng)計(jì)圖.

(說(shuō)明:級(jí)80-100分,級(jí)70-79分,級(jí)60-69分,級(jí)0-59分)

根據(jù)所給信息,解答以下問(wèn)題:

1)在扇形統(tǒng)計(jì)圖中,級(jí)對(duì)應(yīng)的扇形的圓心角是______度;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)所抽取學(xué)生的足球運(yùn)球測(cè)試成績(jī)的中位數(shù)會(huì)落在______等級(jí);

4)若成績(jī)達(dá)到等級(jí)的學(xué)生可以選為志愿者,請(qǐng)估計(jì)該校八年級(jí)600名學(xué)生中可以選為志愿者學(xué)生有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案